数学物理学报 ›› 2010, Vol. 30 ›› Issue (3): 753-763.

• 论文 • 上一篇    下一篇

一类非线性中立型脉冲时滞微分方程解的渐近性

魏耿平1|申建华2   

  1. 1. 怀化学院数学系 湖南怀化 418008|2. 杭州师范大学数学系 杭州 310028
  • 收稿日期:2008-04-21 修回日期:2009-06-23 出版日期:2010-05-25 发布日期:2010-05-25
  • 基金资助:

    国家自然科学基金(10571050)和湖南省自然科学基金(07JJ6010)资助

Asymptotic Behavior for a Class of Nonlinear Impulsive Neutral Delay Differential Equations

 WEI Geng-Ping1, SHEN Jian-Hua2   

  1. 1. Department of Mathematics, Huaihua College, Hunan Huaihua 418008|2. Department of Mathematics, Hangzhou Normal University, Hangzhou 310028
  • Received:2008-04-21 Revised:2009-06-23 Online:2010-05-25 Published:2010-05-25
  • Supported by:

    国家自然科学基金(10571050)和湖南省自然科学基金(07JJ6010)资助

摘要:

该文研究具有正负系数的非线性中立型脉冲时滞微分方程
{[x(t)c(t)x(tτ)]+p(t)f(x(tδ))q(t)f(x(tσ))=0,tt0, ttk,x(tk)=bkx(tk)\disp  +(1bk)(tktkδp(s+δ)f(x(s))dstktkσq(s+σ)f(x(s))ds),k=1,2,3,,


获得了该方程的每一个解当t时趋于一个常数的充分条件.

关键词: 渐近性, Liapunov泛函, 中立型时滞微分方程, 脉冲

Abstract:

This paper is concerned with the
nonlinear impulsive neutral delay differential equation with
positive and negative coefficients,
{[x(t)c(t)x(tτ)]+p(t)f(x(tδ))q(t)f(x(tσ))=0,tt0, ttk,x(tk)=bkx(tk)\disp  +(1bk)(tktkδp(s+δ)f(x(s))dstktkσq(s+σ)f(x(s))ds),k=1,2,3,.


Sufficient conditions are obtained for every solution of
the above equation tending to a constant as t.

Key words: Asymptotic behavior, Liapunov functional, Neutral delay differential equation, Impulse

中图分类号: 

  • 34K20