数学物理学报 ›› 2010, Vol. 30 ›› Issue (3): 753-763.

• 论文 • 上一篇    下一篇

一类非线性中立型脉冲时滞微分方程解的渐近性

魏耿平1|申建华2   

  1. 1. 怀化学院数学系 湖南怀化 418008|2. 杭州师范大学数学系 杭州 310028
  • 收稿日期:2008-04-21 修回日期:2009-06-23 出版日期:2010-05-25 发布日期:2010-05-25
  • 基金资助:

    国家自然科学基金(10571050)和湖南省自然科学基金(07JJ6010)资助

Asymptotic Behavior for a Class of Nonlinear Impulsive Neutral Delay Differential Equations

 WEI Geng-Ping1, SHEN Jian-Hua2   

  1. 1. Department of Mathematics, Huaihua College, Hunan Huaihua 418008|2. Department of Mathematics, Hangzhou Normal University, Hangzhou 310028
  • Received:2008-04-21 Revised:2009-06-23 Online:2010-05-25 Published:2010-05-25
  • Supported by:

    国家自然科学基金(10571050)和湖南省自然科学基金(07JJ6010)资助

摘要:

该文研究具有正负系数的非线性中立型脉冲时滞微分方程
$$
\left\{
\begin{array}{l}
[x(t)-c(t)x(t-\tau)]'+p(t)f(x(t-\delta))-q(t)f(x(t-\sigma))=0,
\quad t\geq t_0,~ t\not= t_k, \\
x(t_k)= b_kx(t_k^-)\\
\disp\qquad \quad\ \ +(1-b_k)\Big(\int^{t_k}_{t_k-\delta}p(s+\delta)f(x(s)){\rm d}s-
\int^{t_k}_{t_k-\sigma}q(s+\sigma)f(x(s)){\rm d}s\Big),\\
\hskip 9cm k=1,2,3,\cdots,
\end{array}
\right.
$$
获得了该方程的每一个解当$t\to \infty$时趋于一个常数的充分条件.

关键词: 渐近性, Liapunov泛函, 中立型时滞微分方程, 脉冲

Abstract:

This paper is concerned with the
nonlinear impulsive neutral delay differential equation with
positive and negative coefficients,
$$
\left\{
\begin{array}{ll}
[x(t)-c(t)x(t-\tau)]'+p(t)f(x(t-\delta))-q(t)f(x(t-\sigma))=0,\quad
t\geq t_0,~ t\not= t_k, \\
x(t_k)= b_kx(t_k^-)\\
\disp\qquad \quad\ \ +(1-b_k)\left(\int^{t_k}_{t_k-\delta}p(s+\delta)f(x(s)){\rm d}s-
\int^{t_k}_{t_k-\sigma}q(s+\sigma)f(x(s)){\rm d}s\right),\\
\hskip 9.7cm k=1,2,3,\cdots.
\end{array}
\right.
$$
Sufficient conditions are obtained for every solution of
the above equation tending to a constant as $t\to \infty$.

Key words: Asymptotic behavior, Liapunov functional, Neutral delay differential equation, Impulse

中图分类号: 

  • 34K20