数学物理学报 ›› 2010, Vol. 30 ›› Issue (3): 764-775.

• 论文 • 上一篇    下一篇

带弱奇异核的抛物型积分微分方程的非协调有限元方法

石东洋1|郭城2|王海红3   

  1. 1. 郑州大学数学系 郑州 450052;  2. 郑州师范高等专科学校数学系 郑州 450044; 3. 河南财经学院数学与信息科学系 郑州 450002
  • 收稿日期:2008-03-27 修回日期:2009-10-21 出版日期:2010-05-25 发布日期:2010-05-25
  • 基金资助:

    国家自然科学基金(10671184)资助

Nonconforming Finite Element Method for Integro-Differential Equation of Parabolic Type with Weakly Singular Kernel

SHI Dong-Yang1, GUO Cheng2, WANG Hai-Hong3   

  1. 1. Department of Mathematics, Zhengzhou University, Zhengzhou 450052|2. Department of Mathematics, Zhengzhou Teachers College, Zhengzhou 450044|3. Department of Mathematical and Information Scientific, Henan University of Finance and Economics, Zhengzhou 450002
  • Received:2008-03-27 Revised:2009-10-21 Online:2010-05-25 Published:2010-05-25
  • Supported by:

    国家自然科学基金(10671184)资助

摘要:

研究了带弱奇异核的抛物型积分微分方程的非协调有限元方法,  在不需要Ritz-Volterra投影的情况下,  在半离散和全离散的格式下分别得到了与协调有限元方法相同的误差估计.

关键词: 抛物型积分微分方程, 弱奇异核, 非协调元, 误差估计

Abstract:

The nonconforming finite element methods for integro-differential equation with a weakly singular kernel are studied. The same optimal error estimates as the traditional methods both in semi-discrete scheme and full discretization are obtained without using Ritz-Volterra projection.

Key words: Parabolic integro-differential equation,  Weakly singular kernel, Nonconforming, Error estimates

中图分类号: 

  • 65N15