[1] Albeverio S, Blanchard P, Ma Z M. Feynman-Kac semigroups in terms of signed smooth measures. International Series of Numerical Mathematics. 1991, 102: 1--31
[2] Albeverio S, Ma Z M. Perturbation of Dirichlet forms-lower semi-boundedness, closability and form cores. J Funct Anal, 1991, 99: 332--356
[3] Albeverio S, Ma Z M. Additive functionals, Nowhere Radon and Kato-class smooth measures associated with Dirichlet forms. Osaka J Math, 1992, 29: 247--265
[4] 陈传钟, 孙玮. 非对称狄氏型的扰动及其结合的马氏过程. 数学物理学报, 2001, 21A(2): 154--161
[5] Chen C Z, Sun W. Strong continuity of generalized Feynman-Kac semigroups: necessary and sufficient conditions. J Funct Anal, 2006, 237: 446--465
[6] 陈传钟. 广义狄氏型的扰动及其结合的马氏过程. 应用数学学报, 2001, 24: 561--567
[7] 陈传钟. 狄氏型的扰动和广义Feynman-Kac半群[D]. 博士学位论文, 长沙: 中南大学, 2004
[8] Chen C Z. A note on perturbation of non-symmetric Dirichlet forms by signed smooth measures. Acta Mathematica Scientia, 2007, 27B(1): 119--224
[9] Chen Z Q, Ma Z M, Rockner M. Quasi-homeomorphisms of Dirichlet forms. Nagoya J Math, 1994, 136: 1--15
[10] Chen Z Q, Zhao Z. Diffusion processes and second order elliptic operators with singular coefficients for lower order terms. Math Ann, 1995, 302: 323--357
[11] Chen Z Q, Zhang T S. Girsanov and Feynman-Kac type transformations for symmetric Markov processes. Ann Inst H Poincaré Probab Statist, 2002, 38(4): 475--505
[12] Chen Z Q. On Feynman-Kac perturbation of symmetric Markov processes. Proceedings of Functional Analysis IX, Dubrovnik, Croatia, 2005: 39--43
[13] Chen Z Q, Zhang T S. Time-reversal and elliptic boundary value problems. preprint
[14] 韩新方, 马丽. 非对称狄氏型的扰动及其对应的无穷小生成元. 海南师范大学学报, 2007, 20(1): 13--18
[15] Getoor R K. Measure perturbations of Markovian semigroups. Potential Anal, 1999, 11: 101--133
[16] Gerhard W D. The probabilistic of the Dirichlet problem for 1/2?+(α, ∨)+b with singular coefficents. J Theor Prob, 1992, 5: 503--520
[17] Fitzsimmons P J, Kuwae K. Nonsymmetric perturbations of symmetric Dirichlet forms. J Funct Anal, 2004, 208: 140--162
[18] Fukushima M, Oshima Y, Takeda M. Dirichlet Forms and Symmetric Markov Processes. Berlin: Walter de Gruyrer, 1994
[19] Ma Z M, Rockner M. Markov processes associted with positivity preserving coercive Forms. Can J Math, 1995, 47(4): 817--840
[20] Ma Z M, R\"{o}ckner M. Introduction to the Theory of (Non-symmetric) Dirichlet Forms. Berlin: Springer-Verlag, 1992
[21] Stannat W. The theory of generalized Dirichler foms and its applications in analysis and stochastics. Mem Amer Math Soc, 1999, (142): 678
[22] Stannat W. Generalized Dirichlet forms and Markov processes. C R Acad Sci Paris, 1994, 319: 1063--1068 |