[1] Chern S S. On the kinematic formula in integral geometry. J of Math and Mechanics, 1966, 16: 101--118
[2] Chen C S. On the kinematic formula of square of mean curvature. Indiana Univ Math J, 1972--1973, 22: 1163--1169
[3] Chen F, Zhao X, Zhou J. An analogue of the Euler formula. J Math (PRC), 2005, 25: 1--4
[4] Diskant V I. A generalization of Bonnesen's inequalities. Soviet Math Doklady, 1973, 14(6): 1728--1731;
(translation of Doklady Akad Nauk SSSR) 1973, 213: 519--521
[5] Grinberg E, Li S, Zhang G, Zhou J. Integral Geometry and Convexity. Singapore: World Scientific, 2006
[6] Howard R. The Kinematic Formula in Riemannian Geometry. Providence, RI: Amer Math Soc, 1993
[7] Ren D. Topics in Integral Geometry. Series in Pure Mathematics. Sigapore: World Scientific, 1994
[8] Santaló L A. Integral Geometry and Geometry Probability. Reading, Mass: Addison-Wesley Publishing Company, 1976
[9] Spivak M. A Comprehensive Introduction to Differential Geometry. Berkeley: Publish or Perish Inc, 1979
[10] Schneider R. Convex Bodies: the Brunn-minkowski Theory. Encyclopedia of Mathematics and Its Applications, 44. Cambridge: Cambridge University Press, 1993
[11] Zhang G. A sufficient condition for one convex body containing another. Chinese Ann Math (Ser B), 1988, 9: 447--451
[12] Zhou J. On the second fundamental forms of the intersection of submanifolds. Taiwanese J of Math, 2007, 11(1): 215--229
[13] Zhou J. Kinematic formula for square mean curvature of hypersurfaces. Bulletin of the Institute of Math (Academia Sinica), 1994, 22(1): 31--47
14] Zhou J. Kinematic formulas for mean curvature powers of hypersurfaces and Hadwiger's theorem in R2n. Trans Amer Math Soc, 1994, 345: 243--262
[15] Zhou J, Li H, Chen X. Analogues of Hadwiger's theorem in space Rn sufficient conditions for a convex domain to enclose another. Acta Math Sinica, New Series, 1995, 11: 12--22
[16] Zhou J. Sufficient conditions for one domain to contain another in a space of constant curvature. Proc Amer Math Soc, 1998, 126: 2797--2803
[17] Zhou J. A kinematic formula and analogues of hadwiger's theorem in space. Contemporary Math, 1992, 140: 159--167
[18] Zhou J. The sufficient conditions for a convxe domain to contain another in R4. Proc Amer Math Soc, 1994, 121: 907--913
[19] Zhou J. When can one domain enclose anther in R3? J Austral Math Soc (Series A), 1995, 59: 266--272
[20] Zhou J. The Willmore functional and the containment problem in R4. Sci China (Ser A), 2007, 50(3): 325--333
|