数学物理学报 ›› 2010, Vol. 30 ›› Issue (2): 397-404.

• 论文 • 上一篇    下一篇

插值逼近具边界数据的调和函数

涂天亮1, 莫炯2   

  1. 1.华北水利水电学院数学与信息学院|郑州 450011|2.郑州大学物理学院|郑州 450052
  • 收稿日期:2006-04-11 修回日期:2009-03-08 出版日期:2010-04-25 发布日期:2010-04-25
  • 基金资助:

    河南省自然科学基金(974050900)资助.

Interpolatory Approximation to Harmonic Function with Boundary Data

TU Tian-Liang1, MO Jiong2   

  1. 1.Department of Mathematics and Informatics, North China Institute of Water Conservancy and Hydroelectric power, Zhengzhou 450011|2.Department |of Physics, Zhengzhou University, Zhengzhou 450052
  • Received:2006-04-11 Revised:2009-03-08 Online:2010-04-25 Published:2010-04-25
  • Supported by:

    河南省自然科学基金(974050900)资助.

摘要:

该文考虑光滑闭Jondan曲线 Γ 围成的单连区域D, 证明了在 Γ上具有已知导数数据的D内调和函数u(x, y)的存在性. 继而构造了一个调和插值多项式序列在D=D ∪Γ 上一致收敛于u(x, y), 且具理想的收敛速度. 此外, 以往同类研究工作中的边界 Γ 是解析曲线, 而在该文中已减少边界限制为 Γ∈ J0.

关键词: 调和函数, 导数边界数据, 调和插值多项式, 一致收敛, 收敛速度

Abstract:

Suppose D is a simply connected domain bounded by a smooth closed Jordan curve Γ. In D the existence of a  harmonic function u(x, y) with given derivative boundary data on Γ is proved. By the way, the line integral representation of such a harmonic function u(x, y) is obtained. Moreover, the authors construct a sequence of harmonic interpolation polynomials uniformly convergent to u(x, y) on D=D ∪ Γ with the desirable rate of  convergence. In addition, the boundary condition that Γ is an analytic curve in early similar works is decreased to Γ ∈ J0.

Key words: Harmonic function, Derivative boundary data,  Harmonic interpolation polynomial,  Uniform convergence, Rate of
convergence

中图分类号: 

  • 35E05