[1] Anderson J R. Local existence and uniqueness of solutions of degenerate parabolic equations. Comm Patial Differential Equations, 1991, 16: 105--143
[2] 陈玉娟. 非局部退化抛物型方程组的解的爆破和整体存在性. 数学物理学报, 2006, 26A: 731--740
[3] Deng W B, Duan Z W, Xie C H. The blow-up rate for a degenerate parabolic equation with a non-local source. J Math Anal Appl, 2001, 264: 577--597
[4] Deng W B, Li Y X, Xie C H. Blow-up and global existence for a nonlocal degenerate parabolic system. J Math Anal Appl, 2003, 277: 199--217
[5] Deng K, Wang M K, Levine H A. The influence of nonlocal nonlinearities on the long time behavior of solutions of Burgers equation. Quart Appl Math, 1992, 50: 173--200
[6] Escobedo M, Herrero M A. A semilinear parabolic system in a bounded domain. Ann Mat Pura Appl, 1993, CLSX(4): 307--315
[7] Furter J, Grinfeld M. Local vs non-local interactions in population dynamics. J Math Biology, 1989, 27: 65--80
[8] Galaktionov V A, Kurdyumov S, Samarskii A A. A parabolic system of quasi-linear equations II. Differential
Equations, 1983, 19: 1558--1571
[9] Galaktionov V A, Levine H A. A general approach to critical Fujita exponents in nonlinear parabolic problems. Nonlinear Anal, 1998, 34:1005-1027
[10] Pao C V. Blowing-up of solution for a nonlocal reaction-diffusion problem in combustion theory. J Math Anal
Appl, 1992, 166: 591--600
[11] Souplet P. Blow-up in nonlocal reaction-diffusion equations. SIAM Math Anal, 1998, 29: 1301--1334
[12] Souplet P. Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source. J Differential Equations, 1999, 153: 374--406
[13] Deng W. Global existence and finite time blow up for a degenerate reaction-diffusion system. Nonlinear Analysis 2005, 60: 977--991
[14] Du L. Blow-up for a degenerate reaction-diffusion system with nonlinear localized sources. J Math Anal Appl, 2006, 324: 304--320
[15] Du L. Blow-up for a degenerate reaction-diffusion system with nonlinear nonlocal sources. Journal of Computational and Applied Mathematics, 2007, 202: 237--247 |