数学物理学报 ›› 2010, Vol. 30 ›› Issue (2): 364-374.

• 论文 • 上一篇    下一篇

诺依曼边条件下正弦戈登方程组的动力学

刘迎东   

  1. 北京交通大学 理学院数学系, 北京 100044
  • 收稿日期:2008-07-05 修回日期:2009-05-31 出版日期:2010-04-25 发布日期:2010-04-25
  • 基金资助:

    国家自然科学基金(10671131)资助.

The Dynamics of Sine-Gordon System with Neumann Boundary Condition

LIU Ying-Dong   

  1. School of Science, Beijing Jiaotong University, Beijing 100044
  • Received:2008-07-05 Revised:2009-05-31 Online:2010-04-25 Published:2010-04-25
  • Supported by:

    国家自然科学基金(10671131)资助.

摘要:

利用等价模和锥压缩的方法证明了当阻尼常数和扩散常数适当大时, Neumann边条件下周期受迫的Sine-Gordon 方程组的全局吸引子是一条不变曲线, 系统在不变曲线上的行为类似于圆周上的保向同胚.

关键词: 吸引子, 周期解, 稳定性

Abstract:

By the methods of equivalent norms and cone squeezing the author proves that the attractor of the periodic forcing coupled Sine-Gordon system with Neumann boundary condition is an invariant curve when both the damping
constant and diffusion constant are sufficiently large. The behavior of the system on the curve is like the orientation preserving homeomorphism on a circle.

Key words: Attractor, Periodic solution, Stability

中图分类号: 

  • 35Q53