[1] Cressie N A C, Read T R C. Multinominal goodness-of-fit tests. J R Statist Soc (B), 1984, 46(3): 440--464
[2] Owen A B. Nonparametric likelihood confidence bands for a distribution function. J Amer Statist Assoc, 1995, 90: 516--521
[3] Eicher F. The asymptotic distribution of the suprema of the standardized empirical processes. Ann Statist, 1979, 7: 116--138
[4] Jaeschke D. The asymptotic distribution of the supremum of the standardized empirical distribution function on subintervals. Ann Statist, 1979, 7(1): 108--115
[5] Berk R H, Jones D H. Goodness-of-fit statistics that dominate the Kolmogorov statistics. Z Wahrscheinlieitstheorie Verw Gebiete, 1979, 47: 47--59
[6] Jager L, Wellner J A. A new goodness of fit test: the reversed Berk-Jones statistic. Technical report 443. Department of Statistics, University of Washington. http://www.stat.washington.edu/www/research/ reports/2004/tr443.ps, 2004
[7] Stephens M A. Tests Based on EDF Statistics. In Goodness-of-fit Techniques (eds D'Agostino R B, Stephens M A). New York: Marcel Dekker, 1986: 97--193
[8] Wellner J A, Koltchinskii V. A Note on the Asymptotic Distribution of Berk-Jones Type Statistics under the Null Hypothesis. High Dimensional Probability III. Basel: Birkhauser, 2003: 321--332
[9] Chibisov D M. An investigation of the asymptotic power of the tests of fit. Theory Prob Appl, 1965, 10: 421--437
[10] 甘师信,陈平炎. NOD序列加权和的强收敛速度. 数学物理学报, 2008, 28A(2): 283--290
[11] Shorack G R, Wellner J A. Empirical Processes with Applications to Statistics. New York: Wiley, 1986
[12] Wellner J A. Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z Wahrscheinlieitstheorie Verw Gebiete, 1978, 45: 73--88
[13] Csörgö M, Horváth L. Weighted Approximations in Probability and Statistics. Chichester: John Wiley and Sons, 1993 |