数学物理学报 ›› 2010, Vol. 30 ›› Issue (2): 289-296.

• 论文 •    下一篇

随机环境中有界跳幅随机游动常返性暂留性的另一证明

王士东, 洪文明   

  1. 北京师范大学数学科学学院 数学与复杂系统实验室|北京 100875
  • 收稿日期:2008-05-15 修回日期:2009-12-29 出版日期:2010-04-25 发布日期:2010-04-25
  • 基金资助:

    国家自然科学基金(10721091)和 教育部新世纪优秀人才支持计划 NCET(05-0143)资助.

Alternative Proof for the Recurrence and Transience of Random Walks in Random Environment with Bounded Jumps

WANG Shi-Dong, HONG Wen-Ming   

  1. School of Mathematical Sciences &|Laboratory of |Mathematics and Complex Systems, Beijing Normal University, Beijing 100875
  • Received:2008-05-15 Revised:2009-12-29 Online:2010-04-25 Published:2010-04-25
  • Supported by:

    国家自然科学基金(10721091)和 教育部新世纪优秀人才支持计划 NCET(05-0143)资助.

摘要:

假定环境是平稳遍历的, 对具有有限跳幅的随机环境中的随机游动, 该文给出了其常返性暂留性的另一证明. Brémont (2002)的文章中, 通过计算逃逸概率的方法给出了证明, 而该文的证明采用了鞅收敛定理的方法.

关键词: 随机环境中随机游动, 鞅收敛定理, 常返性, 暂留性

Abstract:

The authors derive a new proof of a recurrence and transience criteria for a class of random walks in random environment with bounded jumps, where the environment is assumed to be stationary and ergodic. Martingale convergence method is used in this paper, comparing the original one (Br\'emont (2002)) by the method of computing the  exit probability.

Key words: Random walks in random environment, Martingale convergence theorem, Recurrence, Transience

中图分类号: 

  • 60J10