[1] Nambu Y. Generalized Hamiltonian dynamics. Phys Rev, 1973, D7: 2405--2412
[2] Takhtajan L. On foundation of the generalized Nambu mechanics. Comm in Math phys, 1994, 160: 295--315
[3] Filippov V T. n-Lie algebras. Sib Mat Zh, 1985, 26(6): 126--140
[4] Bagger J, Lambert N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys Rev, 2008, D77, 065008
[5] Bai R, Jia P. The real compact n-Lie aalgebra and invariant bilinear form. Acta Mathematica Scientia (Chinese), 2007, 27(6): 1074--1081
[6] Ho P, Hou R, et al. Lie 3-algebra and multiple M2-branes. arXiv: 0804, 2110
[7] Ho P, Chebotar M, et al. On skew-symmetric maps on Lie algebras. Proc Royal Soc Edinburgh, 2003, 133A: 1273--1281
[8] Papadopoulos G. M2-branes, 3-Lie algebras and Plucker relations. arXiv: 0804. 2662[hep-th]
[9] Alekseevsky D, Guha P. On decomposability of Nambu-Poisson tensor. Acta Mathematica Universitatis Comenianae, 1996, 65: 1--9
[10] Gautheron P. Simple facts concerning Nambu algebras. Commun Math Phys, 1998, 195: 417--434
[11] Michor P W, Vinogradov A M. n-ary and associative algebras. Rend Sem Mat Univ Pol Torino, 1996, 53: 373--392
[12] Marmo G, Vilasi G, et al. The local structure of n-Poisson and n-Jacobi manifolds. J Geom Phys, 1998, 25: 141--182
[13] Kasymov S. On a theory of n-Lie algebras. Algebra Logika, 1987, 26(3): 277--297
[14] Ling W. On the structure of n-Lie algebras. North Rhine-Westphalia: Dissertation University-GHS-Siegen, Siegn, 1993
[15] Pozhidaev A P. Simple quotient algebras and subalgebras of Jacobian algebras. Sib Math J, 1998, 39(3): 512--517
[16] Pozhidaev A P. Two classes of central simple n-Lie algebras. Sib Math J, 1999, 40(6): 1112--1118
[17] Bai R, Wang X. The structure of low dimensional n-Lie algebras over a field of characteristic 2. Linear Algebra and Its Application, 2008, 428: 1912--1920
[18] Graaf W A. Classification of solvable Lie algebras. Experimental Mathematics, 2005, 14: 15--25 |