数学物理学报 ›› 2010, Vol. 30 ›› Issue (1): 239-244.

• 论文 • 上一篇    下一篇

用椭圆描述的四阶边值问题的两参数非共振条件

李永祥, 杨和   

  1. 西北师范大学数学与信息科学学院|兰州 730070
  • 收稿日期:2007-11-30 修回日期:2009-03-26 出版日期:2010-01-01 发布日期:2010-01-01
  • 基金资助:

    国家自然科学基金(10871160)、甘肃省自然科学基金(0710RJZA103)及NWNU-KJCXGC-3-47基金资助.

Two-Parameter Nonresonance Condition Described by Ellipse for Fourth-order Boundary Value Problems

LI Yong-Xiang, YANG He   

  1. College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070
  • Received:2007-11-30 Revised:2009-03-26 Online:2010-01-01 Published:2010-01-01
  • Supported by:

    国家自然科学基金(10871160)、甘肃省自然科学基金(0710RJZA103)及NWNU-KJCXGC-3-47基金资助.

摘要:

该文讨论四阶常微分方程边值问题
   u(4)=f(t, u, ,u''),  0≤ t ≤ 1, 
   u(0)=u(1)=u''(0)=u''(1)=0
解的存在性, 其中 f: [0,1]×R×RR 连续. 文中提出了一个保证该问题解存在的两参数非共振条件, 该条件是用椭圆描述的.

 

关键词: 四阶边值问题, 存在性, 两参数特征值问题, 非共振条件, 等价范数

Abstract:

This paper deals with the existence of solutions for the fourth-order boundary value problem
u(4)=f(t, u, ,u''),  0≤ t ≤ 1, 
u(0)=u(1)=u''(0)=u''(1)=0

where f: [0,1]]×R×RR is continuous. We present a two-parameter nonresonance condition described by ellipse for the existence of the problem.

Key words: Fourth-order boundary value problem, Existence, Two-parameter linear eigenvalue problem, Nonresonance condition, Equivalent norm

中图分类号: 

  • 34B15