[1] Ryu K, Ahn I. Positive solutions for ratio-dependent predator-prey interaction systems. J Differential Equations, 2005, 218(1): 117--135
[2] Ryu K, Ahn I. Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics.J Math Anal Appl, 2003, 283(1): 46--65
[3] Du Y H, Lou Y. Some uniqueness and exact multiplicity results for a predator-prey model. Trans Amer Math Soc, 1997, 349(6): 2443--2475
[4] Pang P Y H, Wang M X. Qualitative analysis of a ratio-dependent predator-prey system with diffusion. Proc Roy Soc Edinburgh A, 2003, 133(4): 919--942
[5] Tang Z W. Existence and asymptotic behavior of the solutions for a nonlinear elliptic equation arising in astrophysics. Acta Mathematica
Scientia, 2006, 26B(2): 229--245
[6] Wu J H, Wei G S. Coexistence states for cooperative model with diffusion. Computer Math Appli, 2002, 43(2): 1277--1290
[7] Hei L J. Global bifurcation of co-existence states for a predator-prey-mutualist model with diffusion. Nonlinear Anal: Real World Applications, 2007, 8(2): 619--635
[8] Gan W Z, Lin Z G. Coexistence and asymptotic periodicity in a competitor-competitor-mutualist model, J Math Anal Appl, 2008, 337(2): 1089--1099
[9] Li H L, Pang P Y H, Wang M X. Qualitative analysis of a diffusive prey-predator model. to be appear
[10] Cano-Casanova S. Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems. Nonlinear Anal Ser A: Theory and Methods, 2002, 49(3): 361--430
[11] Cano-Casanova S, Lòpez-Gòmez L. Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems. J Differential Equations, 2002, 178(1): 123--211
[12] Li L. Coexistence theorems of steady states for predator-prey interacting systems. Trans Amer Math Soc, 1988, 305(1): 143--166
[13] Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues. J Funct Anal, 1971, 8(2): 321--340
|