数学物理学报 ›› 2009, Vol. 29 ›› Issue (4): 1138-1143.

• 论文 • 上一篇    

NA随机场对数律的收敛速度

  

  1. (台州学院 数学系, 浙江 临海 317000)
  • 收稿日期:2008-01-20 修回日期:2009-05-22 出版日期:2009-08-25 发布日期:2009-08-25
  • 基金资助:

    国家自然科学基金(10471126)资助

Convergence Rate in the Law of |Logarithm for NA Random Fields

  1. (Department of Mathematics, Taizhou University, Zhejiang Linhai 317000)
  • Received:2008-01-20 Revised:2009-05-22 Online:2009-08-25 Published:2009-08-25
  • Supported by:

    国家自然科学基金(10471126)资助

摘要:

d是一个正整数, N dd -维正整数格点.设{Xn , n ∈ N d} 是一同分布的负相伴随机场, 记Sn = ∑k≤ n Xk, Sn(k)=Sn-Xk, 如果r >2, EX1 = 0 和σ2= Var(X1}, 则存在一个正数M:=100√(r-2)(1+σ2)使得下列条件等价

(I)   E |X1|r (log|X1|)d-1-r/2 < ∞;

(II)   ∑n∈ Nd |n|r/2-2 P(max1≤ k≤ n |S n(k)| ≥ (2d+1 )ε √|n| log | n |) < ∞, ∨ε  > M;
 
(III)   ∑n ∈ N d |n|r/2-2 P(max1≤ k≤ n |Sk | ≥ ε √| n} log | n |) < ∞, ∨ε > M.

 
 (III)\ \  $\sum\limits_{{{\bf n}}\in {{\cal N}}^{d}} |n|^{r/2-2}
 P(\max\limits_{{\bf 1}\leq{\bf k}\leq{\bf n}}|S_{{\bf k}}|\geq
  \varepsilon \sqrt{|{\bf n}|\log |{\bf n}|})<\infty$,
 $\forall\varepsilon>M$.

关键词:  NA, 随机场, 对数律, 收敛性

Abstract:

Let d be a positive ingter and N d denote  the d-dimensional lattice of positive integers. Let {Xn , n ∈ N d}be a same distribution NA random fields, put Sn = ∑k≤ n Xk, Sn(k)=Sn-Xk, if r >2, EX1 = 0 and σ2= Var(X1}, then there exists a positive constant M:=100√(r-2)(1+σ2) such that the following is equivalent:

(I)   E |X1|r (log|X1|)d-1-r/2 < ∞;

(II)   ∑n∈ Nd |n|r/2-2 P(max1≤ k≤ n |S n(k)| ≥ (2d+1 )ε √|n| log | n |) < ∞, ∨ε  > M;
 
(III)   ∑n ∈ N d |n|r/2-2 P(max1≤ k≤ n |Sk | ≥ ε √| n} log | n |) < ∞, ∨ε > M.

Key words: NA, Random fields, Law of , logarithm, Convergence rate

中图分类号: 

  • 60F15