数学物理学报 ›› 2009, Vol. 29 ›› Issue (4): 1119-1131.

• 论文 • 上一篇    下一篇

交换群上Hopf路余代数的结构分类

  

  1. (南通大学 理学院, 江苏 南通 226007)
  • 收稿日期:2007-11-20 修回日期:2009-04-07 出版日期:2009-08-25 发布日期:2009-08-25
  • 基金资助:

    国家自然科学基金(10771183)资助

Structure Classification of Hopf Path Coalgebras over Abelian Groups

  1. (Department of Mathematics, Nantong University, Jiangsu Nantong 226007)
  • Received:2007-11-20 Revised:2009-04-07 Online:2009-08-25 Published:2009-08-25
  • Supported by:

    国家自然科学基金(10771183)资助

摘要:

G是群, kG是域k上的群代数. 对任意Hopf箭向Q=(G, r), 利用右kZu(C) -模的直积范畴∏C ∈ K(G) MkZu(C)kG-Hopf双模范畴kGkG MkGkG之间的同构, 可由u(C)(kQ1)1上的右kZu(C) -模结构导出在箭向余模kQ1上的kG-Hopf双模结构. 该文讨论在群G分别是2阶循环群与克莱茵四元群时的Hopf路余代数kQc的同构分类及其子Hopf代数kG[kQ1]结构.

关键词: Hopf代数, 模, 分歧

Abstract:

Let G be a group and kG be the group algebra of G  over a field k. It is well known that the kG-Hopf  bimodule category kGkG MkGkG is

equivalent to the direct category ∏C ∈ K(G) MkZu(C) . For any Hopf quiver Q=(G, r), the kG-Hopf bimodule structures on the arrow comodule kQ1 can be derived from the right kZu(C)-module structures on u(C)(kQ1)1. In this paper, the author discusses the isomorphic classification of Hopf path coalgebra kQc and the structures of Hopf subalgebra of kG[kQ1] of kQc in case G is a cyclic group and G is a Klein quaternion group, respectively.

Key words: Hopf algebra, Module, Ramification

中图分类号: 

  • 16w30