[1] Clenshaw J R, Curtis A R. A method for numerical integration on an automatic computer. Numer Math, 1960, 2: 197--205
[2] Evans G A, Webster J R. A high order, progressive method for the evaluation of irregular oscillatory integrals. Appl Numer Math, 1997, 23: 205--218
[3] Evans G A, Webster J R. A comparison of some methods for the evaluation of highly oscillatory integrals.
J Comput Appl Math, 1999, 112: 55--69
[4] Filon L N G. On a quadrature formula for trigonometric integrals. Proc Royal Soc Edinburgh, 1928, 49(11): 38--47
[5] Iserles A. On the numerical quadrature of highly-oscillating integrals II: Irregular oscillators. IMA J Num Anal, 2005, 25: 25--44
[6] Iserles A, N{\o}rsett S P. On quadrature methods for highly oscillatory integrals and their implementation. BIT, 2004, 44: 755--772
[7] Iserles A, N{\o}rsett S P. Efficient quadrature of highly-oscillatory integrals using derivatives. Proc Royal Soc A, 2005, 461: 1383--1399
[8] Kress R. Numerical Analysis. New York: Springer-Verlag, 1998
[9] Levin D. Procedures for computing one-and-two dimensional integrals of functions with rapid irregular oscillations. Math Comp, 1982, 38: 531--538
[10] Levin D. Analysis of a collocation method for integrating rapidly oscillatory functions. J Comput Appld Maths, 1997, 78: 131--138
[11] Longman I M. A method for numerical evaluation of finite integrals of oscillatory functions. Math Comput, 1960, 14: 53--59
[12] Olver S. Moment-free numerical integration of highly oscillatory functions. IMA J Num Anal, 2006, 26: 213--227
[13] Stein E. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton NJ: Princeton University Press, 1993
[14] Xiang S. On the Filon and Levin methods for highly oscillatory integral ∫ab f(x)eiωg(x) dx. J Comput Appl Math, 2007, 208: 434--439
[15] Xiang S, Zhou Y. On quadrature of highly oscillatory functions. J Comput Math, 2006, 24: 579--590
|