[1] Duffin R J, Schaeffer A C. A class of nonharmonic Fourier series. Trans Amer Math Soc, 1952, 72(2): 341--366
[2] Li D F, Yang L J. New perturbation results on frames in Hilbert spaces. Acta Mathematica Scientia (in Chinese), 2008, 28A(3): 489--499
[3] Christensen O. An Introduction to Frames and Riesz Bases. Boston: Birkhäuser, 2002
[4] Grochenig K. Describing functions: Atomic decompositions versus frames. Monatsh Math, 1991, 112(1): 1--41
[5] Christensen O, Heil C. Perturbations of Banach frames and atomic decompositions. Math Nachr, 1997, 185(1): 33--47
[6] Xin J, Zhou J Y. Peturbation and stablity of frames and atomic decmpositions for Banach spaces. Acta Mathematica Sinica (in Chinese), 2002, 45(5):1165--1170
[7] Casazza P G, Christensen O, Stoeva D T. Frame expansions in separable Banach spaces. J Math Anal Appl, 2005, 307(2): 710--723
[8] Hilding S. Note on completeness theorems of Paley-Wiener type. Ann Math, 1948, 49(4): 953--955
[9] Casazza P G, Christensen O. Perturbation of operators and applications to frame theory. J Fourier Anal Appl, 1997, 3(5): 543--557
[10] Casazza G, Han D G, Larson D R. Frames for Banach spaces. In: The Functional and Harmonic Analysis of Wavelets and Frames (Baggett L W, Larson D R, eds.). Contemporary Mathematics, 1999, 247: 149--182
[11] Li D F, Xue M Z. Bases and Frames on Banach Space (in Chinese). Beijing: Science Press, 2007
|