[1] Algoet P H, Cover T M. A sandwich proof of the Shannon-McMillan-Breiman theorem. Ann Probab, 1988, 16: 899--909
[2] Barron A R. The strong ergodic theorem for densities: generalized Shannon-McMillan-Breiman theorem. Ann Probab, 1985, 13: 1292--1303
[3] Breiman L. The individual ergodic theorem of information theory. Ann Math Statist, 1957, 28: 809--811
[4] Chung K L. The ergodic theorem of information theory. Ann Math Statist, 1961, 32: 612--614
[5] Doob J L. Stochastic Processes. New York: Wilely, 1953
[6] Gray R M. Entropy and Information Theory. New York: Springer-Verlag, 1990
[7] Liu W, Yang W G. An extension of Shannon-McMillan theorem and some limit properties for onhomogeneous Markov chains. Stochastic Process Appl, 1996, 61: 129--145
[8] Liu W, Yang W G. The Markov approximation of the sequences of N-valued random variables and a class of small deviation theorems. Stochastic Process Appl, 2000, 89: 117--130
[9] McMillan B. The basic theorems of information theory. Ann Math Statist, 1953, 24: 196--216
[10] Shannon C. A mathematical theory of communication. Bell System Tech J, 1948, 27: 379--423, 623--656
[11] Yang W G, Liu W. The asymptotic equipartition property for $m$th-order nonhomogeneous Markov information sources. IEEE Trans Inform Theory, 2004, 50: 3326--3330
|