[1] Auslander M, Reiten I, Smal$\o$ S O. Representation Theory of Artin Algebra. Cambridge: Cambridge University Press, 1995
[2] Cibils C. A quiver quantum group. Commun Math Phys, 1993, 157: 459--477
[3] Cibils C, Rosso M. Hopf quivers. J Algebra, 2002, 254: 241--251
[4] Chen X W, Huang H L, Ye Y, Zhang P. Monomial Hopf algebra. J Algebra, 2004, 275: 212--232
[5] Chin W, Montgory S. Basic Coalgebras. AMS/IP Stud Adv Math, 1997, 4: 41--47
[6] Green E L, Solberg $\O$. Basic Hopf algebras and quantum groups. Math Z, 1998, 229: 45--76
[7] Hall M. The Theroy of Groups. New York: Macmillan, 1959
[8] Jacobson N. Basic Algebra I. San Francisco: W H Freeman and Company, 1974
[9] Kargapolov M I, Merzljakov Ju I. Fundamentals of the Theory of Groups. Berlin, Heidelberg, New York: Springer-Verlag, 1979
[10] Kassel C. Quantum Groups. New York: Springer-Verlag, 1995
[11 }Montgomery S. Indecomposable coalgebras, simple comodules and pointed Hopf algebras. Proceedings of the American Math Society, 1995, 123(8)
[12] van Oystaeyen F, Zhang P. Quiver Hopf algebras. J Algebra, 2004, 280: 577--589
[13] van Oystaeyen F, Zhang P. Quivers and Hopf Algebras$/\!/$Nonlinear Evolution Equations and Dynamical Systems. Proc ICM, 2002
[14] Radford D. Minial quasitriangular Hopf algebras. J Algebra, 1993, 157: 281--315
[15] Wang Y H, Ye Y. Construct quasitriangular Hopf algebras via quivers. Chinese Ann Math Ser A, 2007, 28(1): 39--48
[16] Zhang P. Hopf algebras on schurian quivers. Commun Algebra, 2006, 34(11): 4065--4082
|