[1] Baruch M. Optimization procedure to correct stiffness and flexibility matrices using vibration tests. AIAA J,
1978, 16: 1208--1210
[2] Baruch M. Optimal correction of mass and stiffness matrices using measured modes. AIAA J, 1982, 20: 1623--1626
[3] Baruch M, Bar-Itzhack I Y. Optimal weighted orthogonalization of measured modes. AIAA J, 1978, 16: 345--351
[4] Berman A, Nagy E J. lmprovement of a large analytical model using test data. AIAA J, 1983, 21: 1168--1173
[5] Boley D, Golub G H. A survey of matrix inverse eigenvalue problems. Inverse Problems, 1987, 3: 595--622
[6] Boley D, Golub G H. A modified method for reconstructing periodic Jacobi matrices. Math Comput, 1984, 42: 143--150
[7] Borges C F, Frezza R, Gragg W B. Some inverse eigenproblems for Jacobi and Arrow matrices. Numer Linear Algebr Appl, 1995, 2: 195--203
[8] Chen H C. Generalized reflexive matrices: special properties and applications. SIAM J Matrix Anal Appl, 1998, 19: 140--153
[9] Hald O. On Discrete and Numerical Sturm-Liouville Problems
[D]. New York: New York University, 1972
[10] Hu X Y, Zhang L, Xie D X. The solvability conditions for inverse eigenvalue problem of bisymmetric
matrices. Math Numer Sin, 1998, 20: 409--418
[11] Joseph K T. Inverse eigenvalue problem in structural design. AIAA J, 1992, 10: 2890-2896
[12] Li N, Chu K-W E. Designing the Hopfield neural network via pole assignment. Int J Sys Sci, 1994, 25: 669-681
[13] Li N. A matrix inverse eigenvalue problem and its application. Linear Algebr Appl, 1997, 266: 143--152
[14] Sun J G. Two kinds of inverse eigenvalue problems for real symmetric matrices. Math Numer Sin, 1988, 3: 282-290
[15] Sun J G. Backward perturbation analysis of certain characteristic subspaces. Numer Math, 1993, 65: 357--382
[16] Xie D X, Zhang L, Hu X Y. The solvability conditions for the inverse problem of bisymmetric nonnegative definite metrices. J Comput Math, 2000, 18: 597--608
[17] Zhang Z Z, Hu X Y, Zhang L. The solvability conditions for the inverse eigenualue problem of Hermitian-generalized Hamiltonian matrices. Inverse Problems, 2002, 18: 1369--1376
[18] Zhou S Q, Dai H. Inverse Algebraic Eigenvalue Problems (in chinese). Zhenzhou: Henan Sciences and Technology Press, 1991
|