杨定华
Yang Dinghua
摘要: 该文利用矩阵的方法, 获得了两个同向的 n 维单形同时等距嵌入 En 维欧氏空间的一个充分必要条件是: 对于预给(n+1)2个距离,满足一组具有行列式形式的不等式组det(△k)<0, 由此可以得到两组等数量的有限点集合到 En 维欧氏空间中等长嵌入的一个充分必要条件. 然后利用杨路和张景中引进的代数方法, 应用广义等距嵌入定理, 提出了关于两组两个完全同向的 n 维单形“广义度量加”的概念, 并且证明了涉及“广义度量加”的一个几何不等式, 它推广了杨路和张景中关于Alexander猜想的结果. 同时我们将杨路和张景中关于Neuberg-Pedoe不等式的高维推广形式推广到两组两个完全同向的 n 维单形中, 获得了涉及四个单形的一类几何不等式, 它们蕴含近期诸多文献的主要结果.
中图分类号: