数学物理学报

• 论文 • 上一篇    下一篇

关于赋权图中重圈的一个范型定理

余荣1,2; 胡智全2   

  1. (1. 武汉工程大学理学院 武汉 430073; 2. 华中师范大学数学与统计学学院 武汉 430079)
  • 收稿日期:2006-03-08 修回日期:2008-02-08 出版日期:2008-10-25 发布日期:2008-10-25
  • 通讯作者: 余荣
  • 基金资助:
    国家自然科学基金(10371048)资助

A Fan Type Theorem for Heavy Cycles in Weighted Graphs

Yu Rong1,2;Hu Zhiquan2   

  1. (1.School of Science, Wuhan Institute of Technology, Wuhan 430073; 2.Department of Mathematics and Statistics, Central China Normal University, Wuhan 430079)
  • Received:2006-03-08 Revised:2008-02-08 Online:2008-10-25 Published:2008-10-25
  • Contact: Yu Rong

摘要: G=(V, E; w)为赋权图,定义G中点v的权度dGw(v)为G中与v相关联的所有
边的权和.该文证明了下述定理: 假设G为满足下列条件的2 -连通赋权图: (i) 对G中任何导出路xyz都有w(xy)=w(yz); (ii)对G中每一个与K1,3K1,3+e同构的导出子图T, T中所有边的权都相等并且min{max{dGw(x), dwG(y)}:d(x,y)=2,x,y∈ V(T)}≥ c/2. 那么, G中存在哈密尔顿圈或者存在权和至少为 c 的圈. 该结论分别推广了Fan[5], Bedrossian等人[2]和Zhang等人[7]的相关定理

关键词: 拟正规赋权图, 重路, 哈密尔顿圈, 权度

Abstract: Let G=(V, E; w) be a weighted graph, and define the weighted degree dwG(v) of a vertex v in G as the sum of the weights of the edges incident with v. In this paper, the following theorem is proved: suppose G is a 2-connected weighted graph, where (i) w(xy)=w(yz) for every induced path xyz, and (ii) in every induced subgraph T of G isomorphic to K1,3 or K1,3+e, all the edges of T have the same weight and min{max{dwG(x), dwG(y)} : d(x,y) =2,x,y ∈ V(T)}≥ c/2, then G contains either a Hamilton cycle or a cycle of weight c at least. This
respectively generalizes three theorems of Fan[5], Bedrossian et al[2] and Zhang et al[7].

Key words: Semi-normal weighted graph, Heaviest longest path, Hamiltonian cycle, Weighted degree

中图分类号: 

  • 05C