余荣1,2; 胡智全2
Yu Rong1,2;Hu Zhiquan2
摘要: 设G=(V, E; w)为赋权图,定义G中点v的权度dGw(v)为G中与v相关联的所有
边的权和.该文证明了下述定理: 假设G为满足下列条件的2 -连通赋权图: (i) 对G中任何导出路xyz都有w(xy)=w(yz); (ii)对G中每一个与K1,3或K1,3+e同构的导出子图T, T中所有边的权都相等并且min{max{dGw(x), dwG(y)}:d(x,y)=2,x,y∈ V(T)}≥ c/2. 那么, G中存在哈密尔顿圈或者存在权和至少为 c 的圈. 该结论分别推广了Fan[5], Bedrossian等人[2]和Zhang等人[7]的相关定理
中图分类号: