数学物理学报

• 论文 • 上一篇    下一篇

Clifford 分析中无界域上正则函数带Haseman位移的边值问题

许娜; 乔玉英   

  1. (河北科技大学经济管理学院 石家庄 050016; 河北师范大学数学与信息科学学院 石家庄 050016)
  • 收稿日期:2005-11-20 修回日期:2007-07-15 出版日期:2008-10-25 发布日期:2008-10-25
  • 通讯作者: 许娜
  • 基金资助:
    国家自然科学基金(10771049, 10671207)、河北科技大学博士科研启动基金(QD2008006)和河北省基金(A2007000225)资助

The Boundary Value Problem with Haseman Shift for Regular Functions on Unbounded Domains in Clifford Analysis

Xu Na; Qiao Yuying   

  1. (School of Economics & Management, Hebei University of Science and Technology, Shijiazhuang 050016; Hebei Normal University, Shijiazhuang 050016)
  • Received:2005-11-20 Revised:2007-07-15 Online:2008-10-25 Published:2008-10-25
  • Contact: Xu Na

摘要: 该文在引入修正的Cauchy核的基础上,讨论了Clifford 分析中无界域上正则函数带 Haseman 位移的边值问题. 首先给出了无界域上Cauchy 型积分的Plemelj公式,再利用积分方程方法和压缩不动点定理证明了问题解的存在唯一性.

关键词: 实 Clifford 分析, 正则函数, 无界域上的边值问题, 积分方程

Abstract: On the basis of the introduction of the modified Cauchy kernel, this paper deals with the boundary value problem with Haseman shift for regular functions on unbounded domains:
a(t+(t)+b(t-(d(t))+c(t-(t)=g(t).
Firstly, the authors give the Plemelj formula functions on unbounded domains. Then, by the integral equation method and the fixed-point theorem, the authors prove the existence and uniqueness of the solution for the problem.

Key words: Real Clifford analysis, Regular function, Plemelj formula, Boundary value problem on unbounded domains, Integral equation.

中图分类号: 

  • 34B05