数学物理学报

• 论文 • 上一篇    下一篇

奇异非线性Sturm-Liouville边值问题正解的全局结构

孙经先;李红玉   

  1. 徐州师范大学数学系 徐州 221116

    山东科技大学信息科学与工程学院 青岛 266510

  • 收稿日期:2006-03-11 修回日期:2008-01-08 出版日期:2008-06-25 发布日期:2008-06-25
  • 通讯作者: 孙经先
  • 基金资助:
    国家自然科学基金(10671167)资助

Global Structure of Positive Solutions of Singular Nonlinear Sturm-Liouville Problems

Sun Jingxian ;Li Hongyu   

  1. Department of Mathematics, Xuzhou Normal University, Xuzhou 221116;

    College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266510

  • Received:2006-03-11 Revised:2008-01-08 Online:2008-06-25 Published:2008-06-25
  • Contact: Sun Jingxian

摘要: 该文利用拓扑方法讨论一类非线性Sturm-Liouville边值问题
\[
\left\{
\begin{array}{lcl}
-u''=\lambda f(x, u),\\
\alpha_0 u(0)+\beta_0 u'(0)=0,\ \ \alpha_1 u(1)+\beta_1 u'(1)=0;
\end{array}
\right.
\]
作者在非线性项不奇异和奇异两种情况下研究了上述问题正解解集的全局结构,
在非线性项$f$不满足条件f(x,u)≥0(u≥0)时 获得了正解的存在性.

关键词: 非线性Sturm-Liouville 问题, 正解, 全局结构, 拓扑方法

Abstract: In this paper, the following nonlinear Sturm-Liouville problem
\[
\left\{
\begin{array}{lcl}
-u''=\lambda f(x, u),\\
\alpha_0 u(0)+\beta_0 u'(0)=0,\ \ \alpha_1 u(1)+\beta_1 u'(1)=0;
\end{array}
\right.
\]
is discussed by topological methods.
In the case that the nonlinear term is non-singular or singular,
global structure of the positive solution set of the above problem is obtained,
and the existence of positive solutions
of the above problem is proved under the condition that the nonlinear term $f(x,u)$ does not satisfy f(x,u)≥0(u≥0).

Key words: Nonlinear Sturm-Liouville problem, Positive solution, Global structure,
Topological methods

中图分类号: 

  • 34B15