数学物理学报

• 论文 • 上一篇    下一篇

退化时滞微分系统的特征根分布与指数稳定

蒋威   

  1. 安徽大学数学与计算科学学院 合肥 230039
  • 收稿日期:2005-10-20 修回日期:2006-12-09 出版日期:2007-12-25 发布日期:2007-12-25
  • 通讯作者: 蒋威
  • 基金资助:
    国家自然科学基金(10771001)、教育部重点项目(205068)和安徽大学创新团队项目资助

Distribution of Characteristic Roots and Exponential Stability of

Singular Differential Delay Systems

Jang Wei   

  1. School of Mathematics and Computational Science, Anhui University, Hefei 230039
  • Received:2005-10-20 Revised:2006-12-09 Online:2007-12-25 Published:2007-12-25
  • Contact: Jang Wei

摘要: 该文首先研究了退化时滞微分系统的特征根分布, 指出如果退化时滞微分系统的所有特征根都具有负实部, 在一个条件下, 特征根的负实部的最大值为负.由此可以得到一个条件, 在该条件下如果所有特征根都具有负实部, 则退化时滞微分系统的解是指数稳定的.作为例子, 对中立型给出其解为指数稳定的条件.

关键词: 退化时滞微分系统, 特征根分布, 指数稳定

Abstract: This paper firstly investigates the distribution of the characteristic roots of singular differential systems with delay. It is pointed out that if all the
characteristic roots have negative real parts, under a condition, the maximal value of real parts of the characteristic roots is negative. This result shows that if all the characteristic roots have negative real parts, under a condition, the solution of singular differential systems with delay is exponentially stable. And finally, as an example, for the neutral differential systems, the conditions are given under which the solution is exponentially stable.

Key words: Singular differential systems with delay, Distribution of characteristic roots, Exponential stability

中图分类号: 

  • 34K20