数学物理学报

• 论文 • 上一篇    下一篇

一类具无穷时滞泛函微分方程的周期解

刘桂荣; 燕居让   

  1. 运城学院数学系, 运城 044000; 山西大学数学科学学院, 太原 030006
  • 收稿日期:2005-12-19 修回日期:2006-11-04 出版日期:2007-06-25 发布日期:2007-06-25
  • 通讯作者: 刘桂荣
  • 基金资助:
    基金项目:国家自然科学基金(10471040)和山西省自然科学基金(2005Z010)资助

Periodic Solutions for a Class of Neutral Functional Differential Equations with Infinite Delay

Liu Guirong; Yan Jurang   

  1. Department of Mathematics, Yuncheng University, Yuncheng 044000;
    School of Mathematical Sciences, Shanxi University, Taiyuan 030006
  • Received:2005-12-19 Revised:2006-11-04 Online:2007-06-25 Published:2007-06-25
  • Contact: Liu Guirong

摘要: 讨论具有无穷时滞中立型泛函微分方程
$$ \frac{\rm d}{{\rm d}t}\left(x(t)-\int_{-\infty}^{0}g(s,x(t+s)){\rm d}s\right)
=A(t,x(t))x(t)+f(t,x_t)
$$
的周期解问题,利用重合度理论中的延拓定理得到了周期解的存在性和唯一性条件;特别地,
当$g(s,x)\equiv 0, A(t,x)=A(t)$时, 给出了存在唯一稳定周期解的条件.

关键词: 泛函微分方程, 无穷时滞, 中立型, 周期解, 重合度理论

Abstract: Discuss the periodic solutions of the following neutral functional differential equation with infinite delay
$$ \frac{\rm d}{{\rm d}t}\left(x(t)-\int_{-\infty}^{0}g(s,x(t+s)){\rm d}s\right)
=A(t,x(t))x(t)+f(t,x_t).
$$
Some results on the existence and uniqueness of periodic solutions are obtained by using continuation theorem in coincidence degree. Especially, when $g(s,x)\equiv 0$ and $A(t,x)=A(t)$, the conditions which guarantee the existence of the unique and stable periodic solution are derived.

中图分类号: 

  • 34K13