数学物理学报

• 论文 • 上一篇    下一篇

Broer-Kaup系统的达布变换及其孤子解

刘萍   

  1. 西南大学数学与统计学院应用数学系, 重庆 400715
  • 收稿日期:2005-06-13 修回日期:2006-03-20 出版日期:2006-12-25 发布日期:2006-12-25
  • 通讯作者: 刘萍

Darboux Transformation of Broer-Kaup System

Liu Ping   

  1. Department of applied mathematics, School of Mathematics and Statistics, Southwest University, Chongqing 400715
  • Received:2005-06-13 Revised:2006-03-20 Online:2006-12-25 Published:2006-12-25
  • Contact: Liu Ping

摘要: 根据Broer-Kaup系统的Lax对, 借助Broer-Kaup系统的谱问题的规范变换, 一个包含多参数的达布变换被构造出. 以一个平凡解作为种子解, 利用达布变换, 可以求得Broer-Kaup系统的非平凡解的一般表达式. 并且讨论了N=1和N=2两种孤子解的情形. 这是一种与2X2谱问题有关的孤子碰撞图像的新类型.

关键词: 达布变换, Broer-Kaup系统, 孤子方程, 孤子解

Abstract: Based on the resulting Lax pairs of Broer-Kaup system, a new Darboux Transformation with multi-parameters is derived with the help of a gaugetransformation of Broer-Kaup system spectral problem. From a trivial seed,using Darboux Transformation, the generalized soliton solutions of Broer-Kaup system are given, and we discuss N=1 and N=2 two cases. It is a new type for soliton figures associated with 2X2 matrix spectral problem.

Key words: Darboux Transformation, Broer-Kaup system, Soliton equation, Soliton solution

中图分类号: 

  • 35Q51