数学物理学报

• 论文 • 上一篇    下一篇

线性流形上反对称正交对称矩阵反问题的最小二乘解

于蕾; 张凯院; 史忠科   

  1. 西北工业大学理学院应用数学系; 西北工业大学自动化学院, 西安 710072
  • 收稿日期:2005-12-08 修回日期:2006-06-20 出版日期:2006-12-25 发布日期:2006-12-25
  • 通讯作者: 于蕾
  • 基金资助:
    国家自然科学基金重点项目(60134010)资助

Least-Squares Solutions of Inverse Problems for Anti-Symmetric Ortho-Symmetric Matrices on the Linear Manifold

Yu Lei; Zhang Kaiyuan; Shi Zhongke   

  1. School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an 710072 College of Automation, Northwestern Polytechnical University, Xi'an 710072
  • Received:2005-12-08 Revised:2006-06-20 Online:2006-12-25 Published:2006-12-25
  • Contact: Yu Lei

摘要: 该文讨论了线性流形上矩阵方程AX=B反对称正交对称反问题的最小二乘解及其最佳逼近问题. 给出了最小二乘问题解集合的表达式, 得到了给定矩阵的最佳逼近问题的解, 最后给出计算任意矩阵的最佳逼近解的数值方法及算例.

关键词: 矩阵方程, 线性流形, 反对称正交对称矩阵, 最佳逼近

Abstract: This paper discusses the least-squares solutions of matrix equation AX=Bfor anti-symmetric ortho-symmetric matrices on the linear manifold and its optimal approximation problems. The general expression of the least-squares solution set is given.In addition,the expression of the optimal approximation solution to the given matrix is obtained.Numerical methods of the optimal approximation to a given matrix and numerical experiments are described.

Key words: Matrix equation, Linear manifold, Anti-symmetric ortho-symmetric matrix, Optimal approximation

中图分类号: 

  • 15A24