[1]Ewing R E, Yuan Yirang, Li Gang.Timestepping along characteristics for a mixed finite-elementapproximation for compressible flow of contamination by nuclear waste in porous media. SIAM J Numer Anal,1989,26:1513--1524
[2]Ewing R E, Yuan Yirang, Li Gang. A time-discretization procedure for a mixed finite element approximation of contamination by incompressible nuclear waste in porous media. Mathematics for large scale computing,New York and Basel: Marcel Dekker, 1989. 127--145
[3]袁益让. 核废料污染可压缩问题的有限元方法. 科学通报, 1989,34: 1757--1758
[4]袁益让. 可压缩核废料污染问题的数值模拟与分析. 应用数学学报, 1992,1: 70--82
[5]李潜, 陈焕祯. 不可压缩核废料污染问题的沿特征线的混合有限元方法. 高校应用数学学报, 1994, 1: 13--22
[6]李潜. 可压缩核废料污染问题的有限元方法. 计算数学, 1994,16: 227--232
[7]程爱杰, 王高洪. 含弥散核废料污染问题特征线有限元法. 数学物理学报, 1999,19: 278--285
[8]Douglas J Jr, Russel T F. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J Numer Anal, 1982,19: 871--885
[9]Axelsson O, Gustafasson I. A modified upwind scheme for convective transport equations and the use of a conjugate gradient method for the solution of non-symmetric systems of equations. J Inst Maths Applics, 1979,23: 321--337
[10]梁栋. 数值模拟混溶驱动问题的迎风格式及理论分析. 高校应用数学学报, 1994, 9: 118--127
[11]Ewing R E, Lazarov R D, Vassilev A T. Finite difference scheme for parabolic problems on a composite grids with refinement in time and space. SIAM J Numer Anal, 1994, 31: 1606--1622
[12]Sakai K. New numerical schemes based on a criterion for construction essentially stable and accurate numerical schemes for convection-dominated equations. Inter J For Numer Methods in Fluids, 1995,21: 1041--1048
[13]Liang D, Zhao W D. A high-order upwind method for the convection-diffusion problem.Comput Methods Apll Mech Engrg, 1997, 147: 105--115
[14]Zhao W D, Liang D. Modified high-order upwind method for convection diffusion equation.Acta Math Appl Sinica, English Series, 2002, 18: 131--146
[15]Hayes L J. Galerkin alternating-direction methods for nonrectangular regions using patch approximations. SIAM J. Numer Anal, 1981, 18: 627--643
[16]Bramble J H. A second order finite difference analog of the first biharmonic boundary value problem. Numer Math, 1966, 4: 236--249
|