[1]Mandelbrot B B. The Fractal Geometry of Nature. San Fransisco: Freeman W H, 1982. 5--47
[2]Peitgen H O, Saupe D. The Science of Fractal Images. Berlin: Springer-Verlag, 1988. 137--218
[3]Barnsley M F. Fractals Everywhere. Boston: Academic Press Professional, 1993. 26--109
[4]王兴元.复杂非线性系统中的混沌.北京:电子工业出版社,2003. 91--13
[5]王兴元.广义M-J集的分形机理.大连:大连理工大学出版社,2002. 1--58
[6]Lakhtakia A. On the symmetries of the Julia sets for the process z <-- z^p+c. J Phys A Math Gen,1987,20:3533--3535
[7]Gujar U G, Bhavsar V C, Vangala N. Fractals images from z<-- z^α+c in the complex z-plane.Computers Graphics,1992,16(1): 45--49
[8]Dhurandhar S V, Bhavsar V C, Gujar U G. Analysis of z-plane fractals images from z<-- z^α+c for α<0. Computers Graphics,1993,17(1): 89--94
[9]王兴元,朱伟勇.正实数阶广义J集的嵌套拓扑分布定理.东北大学学报(自然科学版),1999,20(5): 489--492
[10]Pickover C A. Computers, Pattern, Chaos and Beauty. New York: St.Martin's Press, 1990. 43--105
[11]Hooper K J. A note on some internal structures of the Mandelbrot set.Computers Graphics,1991,15(2): 295--297
[12]Philip K W. Field lines in the Mandelbrot set. Computers Graphics,1992,16(4): 443--447
[13]Lakhtakia A. Julia sets of switched processes. Computers Graphics,1991,15(4): 597--599
[14]Wang Xingyuan. Fractal structures of the non-boundary region of the generalized Mandelbrot set.Progress in Natural Science,2001,11(9): 693--700
[15]Wang Xingyuan. Switched processes generalized Mandelbrot Sets for complex index number. Appled Mathematics and Mechanics, 2003,24(1): 73--81
[16]Michelitsch M, Rossler O E. The "Burning ship" and its Quasi-Julia set.Computers Graphics,1992,16(4): 435--438
[17]Blancharel P. Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 1984,11: 88--144
[18]Wang Xingyuan, Liu Xiangdong, Zhu Weiyong, et al. Analysis of c-plane fractal images from z<-- z^α+c for α<0. Fractals, 2000,8(3): 307--314
[19]王兴元,刘向东,朱伟勇.由复映射z<-- z^α+c for α<0所构造的广义M集的研究.数学物理学报,1999,19(1): 73--79
|