数学物理学报 ›› 2005, Vol. 25 ›› Issue (6): 784-788.

• 论文 • 上一篇    下一篇

2+1维广义浅水波方程的类孤子解与周期解

 梅建琴, 张鸿庆   

  1. 大连理工大学应用数学系 大连 116024 中国科学院数学机械化实验室 北京 100080
  • 出版日期:2005-12-24 发布日期:2005-12-24
  • 基金资助:

    国家自然科学基金(Grant No.10072013,10072189)资助

Some Soliton like and Periodic Solutions for a (2+1) dimensional Generalization of Shallow Water Wave Equation

 MEI Jian-Qin, ZHANG Hong-Qiang   

  • Online:2005-12-24 Published:2005-12-24
  • Supported by:

    国家自然科学基金(Grant No.10072013,10072189)资助

摘要:

该文基于一个Riccati方程组,提出了一个新的广义投影Ric cati展开法,该方法直接简单并能构造非线性微分方程更多的新的解析解。利用该算法研究了(2+1)维广义浅水波方程,并求得了许多新的精确解,包括类孤子解和周期解。该算法也能应用到其它非线性微分方程中。

关键词: (2+1)维广义浅水波方程;类孤子解;周期解

Abstract:

In this paper,  based on a system of Riccati equations, a  newly general projective Riccati equaiton expansion method is presented. It is  direct and can be used to construct more new exact solutions of nonlinear differ ential equations in mathematical physics. The (2+1)dimensional eneralization  of shallow water wave equation is chosen to illustrate the algorithm such that m ore families of new exact solutions are obtained, which contain soliton\|like and periodic solutions. This algorithm can also be applied to other nonlinear diff erential equations.

Key words: (2+1)dimensional generalization of shallow water wave , equaiton, Soliton like solution, Periodic solution.

中图分类号: 

  • 35Q51