[1] 李树杰, 冯德兴. Hilbert空间中多值极大单调算子的拓扑度. 数学学报, 1982, 25(5): 533-541
[2]Brezis H. Operateurs maximaux monotone et semigroups de contraction s dans les espaces de Hilbert. Amsterdam: NorthHolland, 1973
[3]Burachik R S, Iusem A N, Svaiter B F. Enlargement of monotone operators wit h applications to variational inequalities. SetValued Anal, 1997,5: 159-180
[4]Rockafellar R T. Monotone operators and the proximal point algorithm . SIAM J Control Optim, 1976,14877-898
[5]Chen G, Teboulle M. A proximalbased decomposition method for convex minimization problems. Math Programming, 1994, 64: 81-101
[6]何炳生, 廖立志, 杨振华. 极大单调算子的一个新的近似邻近点算法. 中国科 学(A辑), 2002, 32(11): 1026-1032
[7]Han D R, He B S. A new accuracy criterion for approximate proximal p oint algorithms. J Math Anal Appl, 2001, 263: 343-354
[8]Zeng L C. Iterative algorithms for finding approximate solutions for genera l strongly nonlinear variational inequalities. J Math Anal Appl, 1994, 187(2): 352-360
[9]Zeng L C. Iterative algorithm for finding approximate solutions to complete ly generalized strongly nonlinear quasivariational inequalities. J Math Anal App l, 1996, 201: 180-194
[10]Zeng L C. On a general projection algorithm for variational inequali ties. J Optim Theory Appl, 1998, 97(1): 229-235
[11]Eckstein J. Nonlinear proximal point algorithms using Bregman funct ions, with applications to convex programming. Math Oper Res, 1993,18: 202-226
[12]Eckstein J, Bertsekas D P. On the DouglasRachford splitting method and the proximal points algorithm for maximal monotone operators. Math Programming, 199 2, 55: 293-318
[13]Eckstein J. Approximate iterations in Bregmanfunctionbased proxim al algorithms. Math Programming, 1998, 83: 113-123
[14]He B S. Inexact implicit methods for monotone general variational i nequalities. Math Programming, 1999, 86: 199-217
[15]Hestenes M R. Multiplier and gradient methods. J Optim Theory Appl, 1969, 4:303-320
[16]Solodov M V, Svaiter B F. An inexact hybrid generalized proximal point algo rithm and some new result on the theory of Bregman functions. Math Oper Res, 200 0, 25: 214-230
[17]Aizicovici S, Chen Y Q. Note on the topological degree of the subdifferenti al of a lower semicontinuous convex function. Proc Amer Math Soc, 1998, 126: 2905-2908 |