数学物理学报 ›› 2005, Vol. 25 ›› Issue (2): 281-288.

• 论文 • 上一篇    

关于极大强单调算子的不精确邻近点算法的收敛性分析

曾六川   

  1. 上海师范大学数学系
  • 出版日期:2005-04-25 发布日期:2005-04-25
  • 基金资助:

    高等学校优秀青年教师教学和科研奖励基金、上海市曙光计划基金资助

 On the Convergence Analysis of Inexact Proximal Point Algorithms for Maximal Strongly Monotone Operators  

 CENG Liu-Chuan   

  • Online:2005-04-25 Published:2005-04-25
  • Supported by:

    高等学校优秀青年教师教学和科研奖励基金、上海市曙光计划基金资助

摘要:

 该文研究集值映象方程0∈T(z)的解的迭代逼近,其中T是极大强单调算子.设{x^k}与{e^k}是由不精确邻近点算法x^{k+1}+c_kT(x^{k+1})> x^k+e^{k+1}生成的序列,满足‖e^{k+1}‖≤η_k‖x^{k+1}_x^k‖, ∑^∞_{k=0}(η_k-1)<+∞且inf_(k≥0) η_k=μ≥1.在适当的限制下证明了,{x^k}收敛到T的一个根当且仅当
lim inf_{k→+∞} d(x^k,Z)=0,其中Z是方程0∈T(z)的解集

关键词: 邻近点算法,极大强单调算子,不精确方法

Abstract:

The purpose of this paper is to study the iterative approximation of  solutions to the set valued mapping equation0∈T(z)  where T is a maximal strongly monotone  operator. Suppose that {x^k} and {e^k} are the sequences generated by  the inexact proximal  point algorithm
x^{k+1}+c_kT(x^{k+1})> x^k+e^{k+1} such that ‖e^{k+1}‖≤η_k‖x^{k+1}_x^k‖, ∑^∞_{k=0}(η_k-1)<+∞ and inf_(k≥0) η_k=μ≥1 Under suitable restrictions the author proves that{x^k} converges to a root of T if and only if  liminf_{k→+∞} d(x^k,Z)=0

 

Key words: Proximal point algorithm, Maximal strongly monotone operator,Inexact method.

中图分类号: 

  • 47H09