[1] 杨乐. 值分布论及其新研究, 北京:科学出版社, 1982
[2]高仕安,陈宗煊,陈特为. 线性微分方程的复振荡理论. 武汉: 华中科技大学出版社,1997
[3] 何育赞,萧修治. 代数体函数与常微分方程. 北京: 科学出版社,1988
[4]仪洪勋,杨重骏. 亚纯函数唯一性理论. 北京: 科学出版社,1995
[5] Chen Z X, Yang C C.Some further results on the zeros and growths of entire solutions of second order linear differential equations.Kodai Math J, 1999, 22: 273-285
[6]陈宗煊. 关于微分方程解的增长性. 中国科学(A辑),2001,9:775- 784
[7]Frei M.Uberdie subnormaen losungen der differentialgleichung Ω;″e^{-z}Ω;′K const.Ω=0.Comment Math Helv, 1962, 36: 1-8
[8]Ozawa M. On a solution of Ω;″e^{-z}Ω;′(az+b)Ω=0. KodaiMath J,1980, 3:295- 309
[9]AmemiyaI, Ozawa M.Nonexistence of finite order solution of Ω;″e^{-z}Ω;′Q(z)Ω=0. Hokkaido Math J, 1981, 10:1-17
[10]Gundersen G.On the question of whether f″e^{-z}f′B(z)f=0,can admit a solution f(z)(0) of finite order. Proc RSE, 1986,102A: 9-17
[11]Langley J K.On complex oscillation and a problem of Ozawa. Kodai Math J, 1986, 9:430-439
[12]Chen Z X,Gao S A.The complex oscillation theory of certain nonhom ogeneous linear differential equations with transcendental entire coefficients.J Math Analy App, 1993, 179(2): 403-416
[13]Chen Z X.The zero、pole and order of meromorphic solution of differe ntial equations with meromorphic coefficients. Kodai Math J, 1996,19: 341-354 |