[1]Agarwal R P, Bohner M, Li W T. Nonoscillation and Oscillation Theory for Fun ctional Differential Equations. New York: Marcel Dekker, 2004
[2]Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics. Boston: Kluwer Academic Publishers, 1992
[3]Gopalsamy K. A delay induced bifurcation to oscillations. J Math Ghys Sci, 1982, 16: 469-488
[4]Gopalsamy K, Kulenovic M R S, Ladas G. Environmental periodicity and time delays in a “food limited”population model. J Math Anal Appl, 1990, 147: 545-555
[5]Grove E A, Ladas G, Qian C. Global attractivity in a “foodlimited” population model. Dynamics Systems and Applications, 1993, 2: 243-250
[6]Ladas G. Oscillation Theorem of Delay Differential Equat ions with Applications.Oxford: Clarendon Press, 1991
[7]Huo H F, Li W T. Periodic solution of a periodic twospecies competition model with delays. International J of Appl Math, 2003, 12(1): 13-21
[8]Huo H F, Li W T, Cheng S S. Periodic solutions of twospecies diffusion models with continuous time delays.Demonstratio Mathematica,2002, 35(2): 433-446
[9]Kuang Y. Delay differential equations with applications in population dynamics. Boston: Academic Press, 1993
[10]Ladas G, Sficas G Y, Stavroulakis I P. Asymptotic behavior of solutions of retarded differential equation. Proc Amer Math Soc, 1983, 88: 247-253
[11]Li B. Oscillations of delay differential equations with variable coefficients. J Math Anal Appl, 1995,192: 312-321
[12]Nicholson A J. The balance of animal population. J Animal Ecology, 1993, 2: 132-178
[13]Nussbaum R. Periodic solutions of some nonlinear autonomous functional differential equations. J Differential Eqns, 1973, 14:3 68-394
[14]Nussbaum R. The range of periodics of periodic solutions of x′(t)=-αf(x(t-1)). J Math Anal Appl, 1977, 58:280-292
[15]Saker S H, Agarwal Sheba. Oscillation and globalattractivity in a nonlinear delay periodic model of resiratory dynamics.Computers Math Applic,2002, 44:623-632
[16]Yan J, Feng Q. Global attractivity and oscillation in a nonlinear delay equation. Nonlinear Analysis, 2001, 43:101-108
[17]肖燕妮,陈兰荪. 具有阶段结构的竞争系统中自食的稳定性作用。数学物理学报, 2002,22A(2):210-216
[18]宋新琮,陈兰荪。一类浮游生物植化相克时滞微分方程的周期解。数学物理学报, 2003,23A(1):8-13 |