数学物理学报 ›› 2003, Vol. 23 ›› Issue (5): 545-553.

• 论文 • 上一篇    下一篇

多维非退化扩散过程的象集与图集的一致Hausdorff维数

 杨新建   

  1. 湖南师范大学数学系 长沙 410081
  • 出版日期:2003-10-25 发布日期:2003-10-25
  • 基金资助:

    国家自然科学基金(10071019)和湖南省自然科学基金(00JJY2003)资助课题

The Uniform Hausdorff Dimensions for the Image Sets and Graph Sets of the Nondegenerate Multidimensional Diffusion Processes

 YANG Xin-Jian   

  1. 湖南师范大学数学系 长沙 410081
  • Online:2003-10-25 Published:2003-10-25
  • Supported by:

    国家自然科学基金(10071019)和湖南省自然科学基金(00JJY2003)资助课题

摘要:

设X(t)=X(0)+∫^t_0α(X(s))dB(s)+∫^t_0β( X(s))ds为一d(d≥3)维非退化扩散过程。令X(E)={X(t): t∈E}, GRX(E)={(t,X(t)): t∈E},该文证明了:对几乎所有ω:E  B([0,∞)),有dimX(E,ω)=dimGRX(E,ω)=2dimE,这里dimF表示F的Hausdorff维数。

关键词: 扩散过程;Brown运动;Hausdorff维数;象集;图集。

Abstract:

 Let X(t)=X(0)+∫^t_0α(X(s))dB(s)+∫^t_0β( X(s))ds be a d dimensional nondegenerate diffusion process, whereB(t) is a Brownian motion. If α(x) and β(x) are bounded continuous on R^d and satisfying Lipschitz condition, and a(x)=α(x)α(x)^* is uniformly positive definite, that is for  some positive constant C_0, a(x)≥C_0{d×d}, for all x∈R^d, then we prove that, when d≥3:P(ω: dimX(E,ω)=dimGRX(E,ω)=2dimE, for all E∈B([0,∞)))=1,where dimF denotes the Hausdorff dimension of F for F R^l(l≥1), and X(E,ω)={X(t,ω): t∈E},GRX(E,ω)={(t, X(t,ω)): t∈E}, ω∈Ω.

Key words: Diffusion process; , Brownian motion; , Hausdorff , dimension; , Image set, Graph set

中图分类号: 

  • 60J