[1]Capasso V. Mathematical Structures of Epidemic Systems. Berlin: SpringerVerlay, 1993. Vol.97 of lecture notes in Biomathematics
[2]Chen L, Chen J. Nonlinear Dynamical Systems of Biology. Beijing: Academic Press, 1993
[3]Anderson R M, May R M. Population biology of infectious diseases I. Nature, 1979,180:361-367
[4]Li M Y, Graef J R, Wang L, Karsai J. Global dynamics of an SEIR model with varying population size. Math Biosci, 1999,160:1 91-213
[5]Hethcote H W. The Mathematics of Infectious Disease. SIAM REVIEW 2000, 42(4):599-653
[6]Gao L Q, Hethcote H W. Disease transmission models with density dependent demographics. J Math Biol, 1992,30:717-731
[7]Hethcote H W, Stech H W,P Van Den Driessche. Periodicity and stability in epidemic models. In: Busenberg S N,Cooke K L,edt.Differential Equations and
Applications in Ecology, Epidemic and Population Problems. New York: Academic Press, 1981. 65-82
[8]Schuette M C, Hethcote H W. Modelling the effects of varicella vaccination programs on the incidence of chickenpox and shingles.Bull Math Biol, 1999, 61:1031-1064
[9]Thieme H R. Persistence under relaxed pointdissipativity. SIAM J Math Anal, 1993, 24:407-435
[10]Smith H L, Waltman P. Perturbation faglobally stable steady state. Pro ceedings of the American Mathematical Society, 1999, 127: 447-453
|