数学物理学报 ›› 1999, Vol. 19 ›› Issue (5): 537-540.

• 论文 • 上一篇    下一篇

Z2不变的C∞函数芽的典型形式

  

  1. (黔南师专数学系 贵州都匀 558000)

    贵州民族学院数学系  |贵州  550025)

  • 出版日期:1999-12-05 发布日期:1999-12-05

The Canonical Form of Z2 invariant C&infin|Function Germs

  1. (Deptartment of Mathematics Qiannan Teachers College, Guizhou Duyun 558000)

    (Deptartment of Mathematics Guizhou Institute for Nationalities, Guiyang 550025)

  • Online:1999-12-05 Published:1999-12-05

摘要:

Whitney关于偶函数的结果给出了一个变元且在Z2群{±1}下不变的C函数芽的典型形式:如果f∈E1且f(-x)=f(x),则存在h∈E1使得f(x)=h(x2).该文将借助Malgrange预备定理和有关的计算,得出Rn在原点且在群{±In}下不变的C函数芽的典型形式.

关键词: Malgrange预备定理, Z2不变, 典型形式.

Abstract:

The result of Whitney on even functions gives the canonical form of invariant C∞ function germs under Z2 group {±1} in one variable: If f∈E1 and f(-x)=f(x),then there exists h∈E1 such that f(x)=h(x2).In this paper, by means of Malgrange preparation theorem and the related computation, the authors obtain the canonical from of invariant C∞ function germs under group {±In} in Rn at origin.

Key words: Malgrange preparation theorem, Z2 invariant, canonical form.

中图分类号: 

  • 58C27