数学物理学报 ›› 1999, Vol. 19 ›› Issue (4): 361-367.
• 论文 • 下一篇
出版日期:
发布日期:
(Joung Scientist laboratory of Mathematical Physics,Wuhan Institute of physics and Mathematics, The Chinese Academy of Sciences,P.O.Box 71010,Wuhan 430071)
Online:
Published:
摘要:
该文研究了一类由二自由度可积哈密顿系统构成的一维阵列的行波解,发现在长波极限下,问题可约化为分析哈密顿系统在扰动下的同异宿轨道的情形.当无扰系统具有共振时,利用能量——相方法,得到该系统存在同、异宿到不动点和周期轨的充分条件,在该条件下相应地一维阵列存在一组具有孤波特征的行波,同时给出了一个N脉冲孤立子波的例子.
关键词: 阵列, 能量———相方法, 多脉冲同(异)宿, 孤波.
Abstract:
Travelling wave solution in a one dimensional array of two degre of freedom Hamiltonian system is considered. We show that in the long wave limit, the problem can be reduced to the analysis of the honoclinic orbits of perturbed system. with a resonance in the unperturbed system, we show that the perturbed system have multi pulse honoclinic orbits asgmptotic to a periodic orbit, or fixed points using energy phase method.Therefore,the array have travelling wave solutions analogous to multi pulse solitons.
Key words: array, energyphasemethod, multipulsehomoclinic, soliton.
中图分类号:
陈利平. 一类一维陈列的弧波特征[J]. 数学物理学报, 1999, 19(4): 361-367.
Chen Liping. Character as solitary wave in a certain one-dimensional array[J]. Acta mathematica scientia,Series A, 1999, 19(4): 361-367.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: http://121.43.60.238/sxwlxbA/CN/
http://121.43.60.238/sxwlxbA/CN/Y1999/V19/I4/361
1 StrogatzSH,MirolloRZ.SplaystatesingloballycoupledJosephsonarrays:AnalyticalpredictiononFloquetmultipliers.PhysRevE,1993,47:220~227 2 KuramotoY.ChemicalOscillators,wavesandTurbulenve.New York:SpringerVerlag,1984 3 WinfreeA T.TheGeometryofBiologialTime.Berlin:Springer1990 4 DefontainesA D,PomeanY,RostandB.Chainofcoupledbistasbeoscillators:A model.PhysicaD,1990,46:201~216 5 RulkovNF,VolkovshiiAR,RodriguezlozanoA,DelRioZ,VelardeM G.Synchronouschaoticbehaviorofaresponseoscillatorwithchaoticdriving.Chaos,Solitons& Fractal,1994,4(1):201~211 6 NekorkinVI,KazantsevVB,RulkovNF,VerlardeM G,ChuaLO.HomoclinicOrbitsandSolitary WavesinaOnedimensionalArrayofChua′sCircuits.IEEETransOnCircunitsandSystems,1995,42(10) 7 HallerG,WigginsS.MultiPulsejumpingorbitsandhomoctinictreesinamodaltruncationofthedampedforcednonlinearSchr¨ odingerequation,PhysicaD,1995,85:311~347 8 HallerG,WigginsS.GeometryandChaosnearresonantequilibriumof3DOFHamiltoniansystems,PhysicaD,1996,90:319~365 9 HallerG,WigginsS.NpulsehomoclinicorbitsinperturbationsofresonantHamiltonianSystems.ArchRatMechAnal,1995,130:25 10 HallerG,WigginsS.Orbitshomoclinictoresonances:theHamiltoniancase.physiaD,1993,66:298~346 11 FenichelN.Persistenceandsmothnessofivariantmanifoldsforflows.IndUnivMathJ,1971,21:193 12 郭柏灵,庞小峰.孤立子.北京:科学出版社,1987 13 刘适达,刘适式.孤波和湍流.上海:上海科技教育出版社,1994
Cited