数学物理学报 ›› 1997, Vol. 17 ›› Issue (4): 427-431.

• 论文 • 上一篇    下一篇

某类有界拟凸域双全纯不变量的极限

童武   

  1. 首都师范大学数学系 北京 100037
  • 收稿日期:1996-04-02 修回日期:1996-09-07 出版日期:1997-08-26 发布日期:1997-08-26

The Limit of Biholomorphic Invariant on a Class of Pseudoconvex Domains

Tong Wu   

  1. Lept. of Math., Capital Normal University
  • Received:1996-04-02 Revised:1996-09-07 Online:1997-08-26 Published:1997-08-26

摘要: E=E(m,n,k)={(z,w)∈Cn+m:|z|2+|w|2k<1,zCn,wCm,k>0}是Cn+m中的一类有界拟凸域.该文证明了在∂E的强拟凸点上,当m > 1时,lim(z,w)→∂EJE((z,w))=((πn+m(n+m+1)n)/((n+m)!)).m=1时,lim(z,w)→∂EJE((z,w))=((πn+1(n+2)n+1)/((n+1)!)),在∂E的弱拟凸点上,上述要限不存在.

关键词: 拟凸域, 全纯不变量, Bergman核函数

Abstract: E=E(m,n,k)={(z,w)∈Cn+m:|z|2+|w|2k<1,zCn,wCm,k>0} is a class of pseudoconvex domains in Cn+m. In this note is showed it, that lim(z,w)→∂EJE((z,w))=πn+m(n+m+1)n/(n+m)!,when m>1. lim(z,w)→∂EJE((z,w))=πn+1(n+2)n+1/(n+1)!, when m=1 holds on the strongly pseudoconvex points of boundary ∂E; the limit given above not exist on the weakly pseudoconvex points of boundary ∂E.

Key words: Pseudoconvex domain, Holomorphic invariant, Bergman kernel function