数学物理学报 ›› 1997, Vol. 17 ›› Issue (3): 274-279.

• 论文 • 上一篇    下一篇

关于Banach空间的遗传不能分解和商遗传不能合成性质

钟怀杰   

  1. 福建师范大学数学系 福州 350007
  • 收稿日期:1995-08-08 修回日期:1996-01-16 出版日期:1997-06-26 发布日期:1997-06-26
  • 基金资助:

    福建省自然科学基金

On the Hereditarily Indecomposable and Quotient-Hereditarily Incompound Properties of Banach Spaces

Zhong Huaijie   

  1. Department of mathematics, Fujian Normal University
  • Received:1995-08-08 Revised:1996-01-16 Online:1997-06-26 Published:1997-06-26

摘要:

该文说明遗传不能分解空间上的黎斯算子类构成了最大、非平凡的算子理想,简化了Gowers和Maurey关于这类空间上算子构成的推证.
应用对偶原理,引入商遗传不能合成的概念,讨论商遗传不能合成的Banach空间上的算子构成,得到了相应的一些结果.

关键词: Banach空间, 遗传不能分解空间, 商遗传不能合成空间

Abstract:

In this paper, it is shown that the class of Riesz operators on the hereditarily indecomposable space X is the greatest notrivial operator ideal in B(X). The proof about the structure of operators in B(X) by Gowers W. T. and Maurey B. is also simplified.
The concept of Quotient-Hereditarily Incompound spaces is introdused by using of the principle of duality. The corresponding results about operators on the Q. H. IC. space are obtained.

Key words: Banach spaces, Indecomposable, Incompound