数学物理学报 ›› 1997, Vol. 17 ›› Issue (3): 255-260.

• 论文 • 上一篇    下一篇

关于双指标三项线性递推式的一般解

余长安   

  1. 武汉大学数学系 武汉 430072
  • 收稿日期:1995-06-19 修回日期:1996-05-31 出版日期:1997-06-26 发布日期:1997-06-26
  • 基金资助:
    国家自然科学基金

A General Solution for Trinomial Linear Recurrence with two Indices

Yu Changan   

  1. Department of Mathematics, Wuhan University, Wuhan 430072
  • Received:1995-06-19 Revised:1996-05-31 Online:1997-06-26 Published:1997-06-26

摘要: 该文给出了一类双指标的三项线性递推式的一般解公式.有关结论,对具大数值双指标的相应速推式的解的求出,或在有关理论的研究方面,都有其作用.

关键词: 双指标, 三项, 线性递推式, 一般解公式

Abstract: In this paper we consider the following trinomial linear recurrence with two indicis#br#ui,j=f(i,j)ui,j-p+ g(i,j)ui-1,j-p + h(i,j), u1,s=cs(s=1,2,..,p),ui,j=0 (i<1 or j < 1 or jq(i-1)),#br#where i,j=l, 2,...;p,q ≥ 1;f(i,j),g(i,j) and h(i,j) are variable numbers; c,(s=1, 2,.., p) are constant numbers. Its general solution is given by the formula#br#ui,j={ F(i,j;i-1, θ1, 1) } C(j-q(i-1)-1)+∑l=1i{∑ml=1θl=1{F(i,j;i-l,θl+1-ml,l)}h(l,j-q(i-l)-p(θl+1-ml))}(i,j=1,2...),where θl=[(j-1-q(i-l)/p)(1 ≤ l ≤i).

Key words: Two indices, Trinomial, Linear recurrnce, General solution