[1] Lawn S D, Zumla A I. Tuberculosis[J]. Lancet, 2011, 378(9785):57-72.[2] McNerney R, Maeurer M, Abubakar I, et al. Tuberculosis diagnostics and biomarkers:Needs, challenges, recent advances, and opportunities[J]. J Infect Dis, 2012, 205(Suppl 2):S147-S158.[3] Dowdy D W, Steingart K F, Pai M. Serological testing versus other strategies for diagnosis of active tuberculosis in India:A cost-effectiveness analysis[J]. PLoS Med, 2011, 8(8):e1001074.[4] Pai M, Zwerling A, Menzies D. Systematic review:T-cell-based assays for the diagnosis of latent tuberculosis infection:an update[J]. Ann Intern Med, 2008, 149(3):177-184.[5] Brosch R, Vincent V. Cutting-edge science and the future of tuberculosis control[J]. Bull World Health Organ, 2007, 85(5):410-412.[6] Katoch V M. Newer diagnostic techniques for tuberculosis[J]. Indian J Med Res, 2004, 120(4):418-428.[7] Cole S T, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence[J]. Nature, 1998, 393(6685):537-544.[8] Zhang J, Wu X F, Shi L L, et al. Diagnostic serum proteomic analysis in patients with active tuberculosis[J]. Clin Chim Acta, 2012, 413(9, 10):883-887.[9] Xu D D, Deng D F, Li X, et al. Discovery and identification of serum potential biomarkers for pulmonary tuberculosis using iTRAQ-coupled two-dimensional LC-MS/MS[J]. Proteomics, 2014, 14(2, 3):322-331.[10] Zhang C, Song X, Zhao Y, et al. Mycobacterium tuberculosis secreted proteins as potential biomarkers for the diagnosis of active tuberculosis and latent tuberculosis infection[J]. J Clin Lab Anal, 2015, 29(5):375-382.[11] German J B, Bauman D E, Burrin D G, et al. Metabolomics in the opening decade of the 21st century:Building the roads to individualized health[J]. J Nutr, 2004, 134(10):2729-2732.[12] Shin J H, Yang J Y, Jeon B Y, et al. 1H-NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis[J]. J Proteome Res, 2011, 10(5):2238-2247.[13] Somashekar B S, Amin A G, Rithner C D, et al. Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs:ex vivo 1H magic angle spinning NMR studies[J]. J Proteome Res, 2011, 10(9):4186-4195.[14] Somashekar B S, Amin A G, Tripathi P, et al. Metabolomic signatures in guinea pigs infected with epidemic-associated W-Beijing strains of Mycobacterium tuberculosis[J]. J Proteome Res, 2012, 11(10):4873-4884.[15] Chen Y, Wu J, Tu L, et al. 1H NMR spectroscopy revealed Mycobacterium tuberculosis caused abnormal serum metabolic profile of cattle[J]. PLoS One, 2013, 8(9):e74507.[16] Baughn A D, Rhee K Y. Metabolomics of central carbon metabolism in Mycobacterium tuberculosis[J]. Microbiol Spectr, 2014, 2(3):323-329.[17] Nandakumar M, Prosser G A, de Carvalho L P, et al. Metabolomics of Mycobacterium tuberculosis[J]. Methods Mol Biol, 2015, 1285:105-115.[18] Weiner J, Parida S K, Maertzdorf J, et al. Biomarkers of inflammation,immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients[J]. PLoS One, 2012, 7(7):e40221.[19] du Preez I, Loots D T. New sputum metabolite markers implicating adaptations of the host to Mycobacterium tuberculosis, and vice versa[J]. Tuberculosis (Edinb), 2013, 93(3):330-337.[20] Che N, Cheng J, Li H, et al. Decreased serum 5-oxoproline in TB patients is associated with pathological damage of the lung[J]. Clin Chim Acta, 2013, 423(23):5-9.[21] Zhou A, Ni J, Xu Z, et al. Application of 1H NMR spectroscopy-based metabolomics to sera of tuberculosis patients[J]. J Proteome Res, 2013, 12(10):4642-4649.[22] Lau S K, Lee K C, Curreem S O, et al. Metabolomic profiling of plasma from patients with tuberculosis by use of untargeted mass spectrometry reveals novel biomarkers for diagnosis[J]. J Clin Microbiol, 2015, 53(12):3750-3759.[23] Zhang He-qiu(张贺秋), Zhao Yan-lin(赵雁林). Modern Tuberculosis Diagnosis Techniques(现代结核病诊断技术)[M]. Beijing(北京):People's Medical PublishingHouse(人民卫生出版社), 2013.[24] Savorani F, Tomasi G, Engelsen S B. Icoshift:A versatile tool for the rapid alignment of 1D NMR spectra[J]. J Magn Reson, 2010, 202:190-202.[25] Chen Lu(陈璐), Song Kan(宋侃), Wang Yu-lan(王玉兰). Effects of attenuated salmonella typhimurium infection on fecal metabonome in mice (感染减毒鼠伤寒沙门氏菌对小鼠粪样代谢组的影响)[J]. Chinese J Magn Reson(波谱学杂志), 2014, 31(3):349-363.[26] Jiang L M, Huang J, Wang Y L, et al. Metabonomic analysis reveals the CCl4-induced systems alterations for multiple rat organs[J]. J Proteome Res, 2012, 11(7):3848-3859.[27] Eriksson L, Johansson E, Kettaneh-Wold N, et al. Multi- and Megavariate Data Analysis[M]. New York:MKS Umetrics AB, 2006.[28] Eriksson L, Trygg J, Wold S. CV-ANOVA for significance testing of PLS and OPLS® models[J]. J Chemometr, 2008, 22(11, 12):594-600.[29] Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine[J]. Amino Acids, 2011, 40(5):1271-1296.[30] de Backer D. Lactic acidosis[J]. Intensive Care Med, 2003, 29(5):699-702.[31] Sun L, Hu W, Liu Q, et al. Metabonomics reveals plasma metabolic changes and inflammatory marker in polycystic ovary syndrome patients[J]. J Proteome Res, 2012, 11(5):2937-2946.[32] Macallan D C. Malnutrition in tuberculosis[J]. Diagn Microbiol Infect Dis, 1999, 34(2):153-157.[33] Schwenk A, Macallan D C. Tuberculosis, malnutrition and wasting[J]. Curr Opin Clin Nutr Metab Care, 2000, 3(4):285-291.[34] Macallan D C, McNurlan M A, Kurpad A V, et al. Whole body protein metabolism in human pulmonary tuberculosis and undernutrition:Evidence for anabolic block in tuberculosis[J]. Clin Sci (Lond), 1998, 94(3):321-331.[35] Blumenthal A, Isovski F, Rhee K Y. Tuberculosis and host metabolism:ancient associations, fresh insights[J]. Transl Res, 2009, 154(1):7-14.[36] Kinscherf R, Hack V, Fischbach T, et al. Low plasma glutamine in combination with high glutamate levels indicate risk for loss of body cell mass in healthy individuals:the effect of N-acetyl-cysteine[J]. J Mol Med (Berl), 1996, 74(7):393-400. |