[1] Chen Z, Yu J, Song Y T, et al. Aging Beijing:Challenges and strategies of health care for the elderly[J]. Ageing Res Rev, 2010, 9(Suppl 1):S2-S5.[2] Wilson R S, Bienias J L, Berry-Kravis E, et al. The apolipoprotein E epsilon 2 allele and decline in episodic memory[J]. J Neurol Neurosurg Psychiatry, 2002, 73(6):672-677.[3] Morrison J H, Hof P R. Life and death of neurons in the aging brain[J]. Science, 1997, 278(5337):412-419.[4] Sowell E R, Peterson B S, Thompson P M, et al. Mapping cortical change across the human life span[J]. Nat Neurosci, 2003, 6(3):309-315.[5] Nicholson J K, Connelly J, Lindon J C, et al. Metabonomics:a platform for studying drug toxicity and gene function[J]. Nat Rev Drug Discov, 2002, 1(2):153-161.[6] Sibille E. Molecular aging of the brain, neuroplasticity, and vulnerability to depression and other brain-related disorders[J]. Dialogues Clin Neurosci, 2013, 15(1):53-65.[7] Zhang X R, Wu J F, Liu H L, et al. Age- and gender-related metabonomic alterations in striatum and cerebellar cortex in rats[J]. Brain Res, 2013, 1507:28-34.[8] Zhang X R, Liu H L, Wu J F, et al. Metabonomic alterations in hippocampus, temporal and prefrontal cortex with age in rats[J]. Neurochem Int, 2009, 54(8):481-487.[9] Norris S E, Friedrich M G, Mitchell T W, et al. Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease[J]. Neurobiol Aging, 2015, 36(4):1659-1669.[10] Reddy R, Keshavan M S. Phosphorus magnetic resonance spectroscopy:Its utility in examining the membrane hypothesis of schizophrenia[J]. Prostaglandins Leukot Essent Fatty Acids, 2003, 69(6):401-405.[11] Forester B P, Berlow Y A, Harper D G, et al. Age-related changes in brain energetics and phospholipid metabolism[J]. NMR Biomed, 2010, 23(3):242-250.[12] Lutz N W, Cozzone P J. Multiparametric optimization of 31P NMR spectroscopic analysis of phospholipids in crude tissue extracts. 1. Chemical shift and signal separation[J]. Anal Chem, 2010, 82:5433-5400.[13] Fan T W M, Lane A N. Structure-based profiling of metabolites and isotopomers by NMR[J]. Prog Nucl Magn Reson Spectrosc, 2016, (92, 93):54-70.[14] Niere J O, Griffith J M, Grant B R. 31P NMR studies on the effect of phophite on Phytophthora palmivora[J]. J Gen Microbiol, 1990, 136(1):147-156.[15] Schlattner U, Tokarska-Schlattner M, Wallimann T, et al. Mitochondrial creatine kinase in human health and disease[J]. Biochim Biophys Acta, 2006, 1762(2):164-180.[16] Rambo L M, Ribeiro L R, Della-Pace I D, et al. Acute creatine administration improves mitochondrial membrane potential and protects against pentylenetetrazol-induced seizures[J]. Amino Acids, 2013, 44(3):857-868.[17] Cunha M P, Martin-de-Saavedra M D, Romero A, et al. Both creatine and its product phosphocreatine reduce oxidative stress and afford neuroprotection in an in vitro Parkinson's model[J]. ASN Neuro, 2014, 6(6). 1759091414554945.[18] Oliveira J M. Mitochondrial bioenergentics and dynamics in Huntington's disease:Tripartite synapses and selective striatal degeneration[J]. J Bioenerg Biomembr, 2010, 42(3):227-234.[19] Tsui M M, York J D. Roles of inositol phosphates and inositol pyrophosphates in development, cell signaling and nuclear processes[J]. Adv Enzyme Regul, 2010, 50(1):324-337.[20] Windhorst S, Minge D, Bähring R, et al. Inositol-1,4,5-trisphosphate 3-kinase:A regulates dendritic morphology and shapes synaptic Ca2+ transients[J]. Cell Signal, 2012, 24(3):750-757.[21] López-Téllez J F, López-Aranda M F, Navarro-Lobato I, et al. Prefrontal inositol triphosphate is molecular correslate of working memory in nonhuman primates[J]. J Neurosci, 2010, 30(8):3067-3071. |