Chinese Journal of Magnetic Resonance ›› 2023, Vol. 40 ›› Issue (1): 39-51.doi: 10.11938/cjmr20222992
• Articles • Previous Articles Next Articles
SHI Weicheng,JIN Zhaoyang*(),YE Zheng
Received:
2022-03-29
Published:
2023-03-05
Online:
2022-08-10
Contact:
JIN Zhaoyang
E-mail:jinzhaoyang@hdu.edu.cn.
CLC Number:
SHI Weicheng,JIN Zhaoyang,YE Zheng. Fast Multi-channel Magnetic Resonance Imaging Based on PCAU-Net[J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 39-51.
Table 2
The average values of quantitative indicators of reconstructed images with different algorithms under different acceleration factors based on regular sampling
量化指标 | GRAPPA | PCU-Net | PCAU-Net | ||||
---|---|---|---|---|---|---|---|
TRE | R (N=3, C=32)=2.5 | 1.10×10-3 | 8.08×10-4 | 7.64×10-4 | |||
R (N=5, C=32)=3.3 | 1.80×10-3 | 9.44×10-4 | 8.98×10-4 | ||||
R (N=7, C=32)=4.0 | 2.40×10-3 | 9.73×10-4 | 9.33×10-4 | ||||
R (N=9, C=32)=4.6 | 2.60×10-3 | 1.70×10-3 | 1.40×10-3 | ||||
R (N=12, C=32)=5.0 | 2.90×10-3 | 1.70×10-3 | 1.70×10-3 | ||||
SSIM | R (N=3, C=32)=2.5 | 0.9645 | 0.9758 | 0.9787 | |||
R (N=5, C=32)=3.3 | 0.9123 | 0.9673 | 0.9701 | ||||
R (N=7, C=32)=4.0 | 0.8634 | 0.9669 | 0.9688 | ||||
R (N=9, C=32)=4.6 | 0.8337 | 0.9627 | 0.9543 | ||||
R (N=12, C=32)=5.0 | 0.8125 | 0.9422 | 0.9424 | ||||
PSNR | R (N=3, C=32)=2.5 | 30.4921 | 33.0363 | 33.5118 | |||
R (N=5, C=32)=3.3 | 26.0461 | 31.6888 | 32.1041 | ||||
R (N=7, C=32)=4.0 | 23.6166 | 31.4050 | 31.7779 | ||||
R (N=9, C=32)=4.6 | 22.9207 | 29.5721 | 30.7301 | ||||
R (N=12, C=32)=5.0 | 22.5559 | 28.7280 | 28.7139 |
Table 3
Statistics on the quantification index advantages of PCAU-Net reconstructed images compared to PCU-Net reconstructed
量化指标 | R (N=3, C=32) = 2.5 | R (N=5, C=32) = 3.3 | R (N=7, C=32) = 4.0 | R (N=9, C=32) = 4.6 | R (N=12, C=32) = 5.0 |
---|---|---|---|---|---|
TRE | 91% | 86% | 86% | 79% | 48% |
SSIM | 88% | 84% | 75% | 44% | 53% |
PSNR | 91% | 86% | 86% | 61% | 52% |
Table 4
The average values of quantitative indicators of reconstructed images with different algorithms under different acceleration factors based on random sampling
量化指标 | SPIRiT | PCU-Net | PCAU-Net | ||||
---|---|---|---|---|---|---|---|
TRE | R = 2.5 | 1.10×10-3 | 7.8081×10-4 | 7.7575×10-4 | |||
R = 3.3 | 1.10×10-3 | 8.3336×10-4 | 8.1667×10-4 | ||||
R = 4.0 | 1.50×10-3 | 8.7133×10-4 | 8.9446×10-4 | ||||
R = 4.6 | 1.40×10-3 | 9.4146×10-4 | 9.0757×10-4 | ||||
R = 5.0 | 1.90×10-3 | 9.8781×10-4 | 9.9610×10-4 | ||||
SSIM | R = 2.5 | 0.9629 | 0.9656 | 0.9727 | |||
R = 3.3 | 0.9588 | 0.9642 | 0.9694 | ||||
R = 4.0 | 0.9327 | 0.9632 | 0.9720 | ||||
R = 4.6 | 0.9419 | 0.9596 | 0.9593 | ||||
R = 5.0 | 0.9051 | 0.9536 | 0.9660 | ||||
PSNR | R = 2.5 | 33.2773 | 33.2802 | 33.9417 | |||
R = 3.3 | 32.7259 | 32.9076 | 33.5339 | ||||
R = 4.0 | 29.0483 | 32.7743 | 33.5606 | ||||
R = 4.6 | 27.8330 | 32.3175 | 32.4758 | ||||
R = 5.0 | 26.6143 | 31.8950 | 32.1532 |
[1] |
EDELMAN R R, WARACH S. Medical progress: Magnetic resonance imaging[J]. New Engl J Med, 1993, 328(11): 785-791.
doi: 10.1056/NEJM199303183281109 |
[2] | BUXTON R B. Introduction to functional magnetic resonance imaging: principles and techniques[M]. Cambridge university press, 2009. |
[3] | MORRIS S A, SLESNICK T C. Magnetic resonance imaging[J]. Visual Guide to Neonatal Cardiology, 2018: 104-108. |
[4] |
LARKMAN D J, NUNES R G. Parallel magnetic resonance imaging[J]. Phys Med Biol, 2007, 52(7): R15-55.
doi: 10.1088/0031-9155/52/7/R01 pmid: 17374908 |
[5] |
CARLSON J W. An algorithm for NMR imaging reconstruction based on multiple RF receiver coils[J]. J Magn Reson (1969), 1987, 74(2): 376-380.
doi: 10.1016/0022-2364(87)90348-9 |
[6] |
HUTCHINSON M, RAFF U. Fast MRI data acquisition using multiple detectors[J]. Magn Reson Med, 1988, 6(1): 87-91.
pmid: 3352509 |
[7] |
GRISWOLD M A, JAKOB P M, HEIDEMANN R M, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA)[J]. Magn Reson Med, 2002, 47(6): 1202-1210.
doi: 10.1002/mrm.10171 pmid: 12111967 |
[8] |
PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al. SENSE: sensitivity encoding for fast MRI[J]. Magn Reson Med, 1999, 42(5): 952-962.
pmid: 10542355 |
[9] |
LUSTIG M, PAULY J M. SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space[J]. Magn Reson Med, 2010, 64(2): 457-471.
doi: 10.1002/mrm.22428 |
[10] | DENG L, YU D. Deep learning: Methods and applications[J]. Found Trends Signal, 2014, 7(3,4): 197-387. |
[11] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
doi: 10.1038/nature14539 |
[12] | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015: 234-241. |
[13] | WANG S S, SU Z H, YING L, et al. Accelerating magnetic resonance imaging via deep learning[C]// 2016 IEEE 13th international symposium on biomedical imaging (ISBI). IEEE, 2016: 514-517. |
[14] | SCHLEMPER J, DUAN J, OUYANG C, et al. Data consistency networks for (calibration-less) accelerated parallel MR image reconstruction[EB/OL]. arXiv preprint, arXiv:19-09.11795, 2019. |
[15] | SCHLEMPER J, QIN C, DUAN J M, et al. Σ-net: Ensembled iterative deep neural networks for accelerated parallel MR image reconstruction[EB/OL]. arXiv preprint, arXiv:1912.05480, 2019. |
[16] | SRIRAM A, ZBONTAR J, MURRELL T, et al. GrappaNet: Combining parallel imaging with deep learning for multi-coil MRI reconstruction[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 14315-14322. |
[17] |
LEE D, YOO J, TAK S, et al. Deep residual learning for accelerated MRI using magnitude and phase networks[J]. IEEE Trans Biomed Eng, 2018, 65(9): 1985-1995.
doi: 10.1109/TBME.2018.2821699 pmid: 29993390 |
[18] | CHENG H T, WANG S S, KE Z W, et al. A Deep recursive cascaded convolutional network for parallel MRI[J]. Chinese J Magn Reson, 2019, 36(4): 437-445. |
程慧涛, 王珊珊, 柯子文, 等. 基于深度递归级联卷积神经网络的并行磁共振成像方法[J]. 波谱学杂志, 2019, 36(4): 437-445. | |
[19] | TRABELSI C, BILANIUK O, ZHANG Y, et al. Deep complex networks[EB/OL]. arXiv preprint, arXiv:1705.09792, 2017. |
[20] | DEDMARI M A, CONJETI S, ESTRADA S, et al. Complex fully convolutional neural networks for MR image reconstruction[C]// International Workshop on Machine Learning for Medical Image Reconstruction. Springer, Cham, 2018: 30-38. |
[21] | LIANG H Y, GONG Y, KERVADEC H, et al. Laplacian pyramid-based complex neural network learning for fast MR imaging[C]// Medical Imaging with Deep Learning. PMLR, New York, 2020: 454-464. |
[22] |
WANG S S, CHENG H T, YING L, et al. DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution[J]. Magn Reson Imaging, 2020, 68: 136-147.
doi: S0730-725X(19)30533-8 pmid: 32045635 |
[23] | 施伟成, 王春林, 金朝阳. 基于PCU-Net网络的快速多通道磁共振成像方法[P]. 中国: CN112946545A, 2021-06-11. |
[24] | MYRONENKO A. 3D MRI brain tumor segmentation using autoencoder regulari-zation[C]// International MICCAI Brainlesion Workshop. Springer, Cham, 2018: 311-320. |
[25] | LIN M, CHEN Q, YAN S Q. Network in network[EB/OL]. arXiv preprint arXiv:1312.4400, 2013. |
[26] | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Boston, 2015: 1-9. |
[27] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Las Vegas, 2016: 770-778. |
[28] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE T Image Process, 2004, 13(4): 600-612.
doi: 10.1109/tip.2003.819861 pmid: 15376593 |
[29] |
ZHANG T, PAULY J M, VASANAWALA S S, et al. Coil compression for accelerated imaging with Cartesian sampling[J]. Magn Reson Med, 2013, 69(2): 571-582.
doi: 10.1002/mrm.24267 pmid: 22488589 |
[1] | Li Yijie,YANG Xinyu,YANG Xiaomei. Magnetic Resonance Image Reconstruction of Multi-scale Residual Unet Fused with Attention Mechanism [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 307-319. |
[2] | LU Qiqi,LIAN Zifeng,LI Jialong,SI Wenbin,MAI Zhaohua,FENG Yanqiu. Magnetic Resonance $R_{2}^{*}$ Parameter Mapping of Liver Based on Self-supervised Deep Neural Network [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 258-269. |
[3] | ZHANG Jiajun,LU Yucheng,BAO Yifang,LI Yuxin,GENG Chen,HU Fuyuan,DAI Yakang. An Automatic Segmentation Method of Cerebral Arterial Tree in TOF-MRA Based on DBCNet [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 320-331. |
[4] | TIAN Hui,WU Jie,BIAN Yun,ZHANG Zhiwei,SHAO Chengwei. Classification of Pancreatic Cystic Tumors Based on DenseNet and Transfer Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 270-279. |
[5] | Min HUANG, Siyi LI, Junbo CHEN, Dao ZHOU. Progress of Magnetic Resonance Fingerprinting Technology and Its Clinical Application [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 207-219. |
[6] | Chengyi QIAN, Yuanjun WANG. Research Progress on Imaging Classification of Alzheimer’s Disease Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 220-238. |
[7] | Qin ZHOU, Yuan-jun WANG. Groupwise Registration for Magnetic Resonance Image Based on Variational Inference [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 291-302. |
[8] | Xiao CHANG,Xin CAI,Guang YANG,Sheng-dong NIE. Applications of Generative Adversarial Networks in Medical Image Translation [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 366-380. |
[9] | Ying-shan WANG, Ao-qi DENG, Jin-ling MAO, Zhong-qi ZHU, Jie SHI, Guang YANG, Wei-wei MA, Qing LU, Hong-zhi WANG. Automatic Segmentation of Knee Joint Synovial Magnetic Resonance Images Based on 3D VNetTrans [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 303-315. |
[10] | Meng CHEN, Chen GENG, Yu-xin LI, Dao-ying GENG, Yi-fang BAO, Ya-kang DAI. Automatic Detection for Cerebral Aneurysms in TOF-MRA Images Based on Fuzzy Label and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 267-277. |
[11] | Zhen-yu WANG, Ying-shan WANG, Jin-ling MAO, Wei-wei MA, Qing LU, Jie SHI, Hong-zhi WANG. Magnetic Resonance Images Segmentation of Synovium Based on Dense-UNet++ [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 208-219. |
[12] | Lu HUO,Xiao-xin HU,Qin XIAO,Ya-jia GU,Xu CHU,Luan JIANG. Automatic Segmentation of Breast and Fibroglandular Tissues in DCE-MR Images Based on nnU-Net [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 367-380. |
[13] | LIU Peng, ZHONG Yu-min, WANG Li-jia. Automatic Segmentation of Right Ventricle in Cine Cardiac Magnetic Resonance Image Based on a Dense and Multi-Scale U-net Method [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 456-468. |
[14] | ZHAO Shang-yi, WANG Yuan-jun. Classification of Alzheimer's Disease Patients Based on Magnetic Resonance Images and an Improved UNet++ Model [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 321-331. |
[15] | GONG Jin-chang, WANG Yu, WANG Yuan-jun. A Method for Segmentation of Glioma on Multimodal Magnetic Resonance Images Based on Wavelet Fusion and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2020, 37(2): 131-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||