[1] QUERFURTH H W, LAFERLA F M. Alzheimer's mechanisms of disease[J]. New Engl J Med, 2010, 362(4):329-344. [2] ALZHEIMER'S ASSOCIATION. 2011 Alzheimer's disease facts and figures[R]. Alzheimer's & Dementia, 2011, 7(2):208. [3] KIVIPELTO M, HELKALA E L, LAAKSO M P, et al. Midlife vascular risk factors and Alzheimer's disease in later life:longitudinal, population based study[J]. Brit Med J, 2001, 322(7300):1447-1451. [4] JACK JR C R, BERNSTEIN M A, FOX N C, et al. The Alzheimer's disease neuroimaging initiative (ADNI):MRI methods[J]. J Magn Reson Imaging, 2008, 27(4):685-691. [5] BRON E E, SMITS M, VAN DER FLIER W M, et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI:the CADDementia challenge[J]. NeuroImage, 2015, 111:562-579. [6] CHENG H T, WANG S S, KE Z W, et al. Deep recursive cascaded convolutional network for parallel MRI[J]. Chinese J Magn Reson, 2019, 36(4):437-445. 程慧涛, 王珊珊, 柯子文, 等. 基于深度递归级联卷积网络的并行磁共振成像方法[J]. 波谱学杂志, 2019, 36(4):437-445. [7] LIU S D, CAI W D, WEN L F, et al. Neuroimaging biomarker based prediction of Alzheimer's disease severity with optimized graph construction[C]. San Francisco:2013 IEEE 10th International Symposium on Biomedical Imaging. 2013:1336-1339. [8] TONG T, WOLZ R, GAO Q Q, et al. Multiple instance learning for classification of dementia in brain MRI[J]. Med Image Comput Comput Assist Interv, 2013, 16(Pt 2):599-606. [9] SHANKAR K, LAKSHMANAPRABU S K, KHANNA A, et al. Alzheimer detection using group grey wolf optimization based features with convolutional classifier[J]. Comput Electr Eng, 2019, 77:230-243. [10] BASKAR D, JAYANTHI V S, JAYANTHI A N. An efficient classification approach for detection of Alzheimer's disease from biomedical imaging modalities[J]. Multimed Tools Appl, 2019, 78(10):12883-12915. [11] MADUSANKA N, CHOI H K, SO J H, et al. Alzheimer's disease classification based on multi-feature fusion[J]. Curr Med Imaging Rev, 2019, 15(2):161-169. [12] CUI R X, LIU M H, THE ALZHEIMER'S DISEASE NEUROIMAGING INITIATIVE. RNN-based longitudinal analysis for diagnosis of Alzheimer's disease[J]. Comput Med Imag Grap, 2019, 73:1-10. [13] LI F, LIU M H, ALZHEIMER'S DISEASE NEUROIMAGING INITIATIVE. Alzheimer's disease diagnosis based on multiple cluster dense convolutional networks[J]. Comput Med Imag Grap, 2018, 70:101-110. [14] LIU S Q, LIU S D, CAI W D, et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease[J]. IEEE T Bio-Med Eng, 2015, 62(4):1132-1140. [15] IOFFE S, SZEGEDY C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[J]. 2015. arXiv:1502.03167. [16] LIU K W, LIU Z L, WANG X Y, et al. Prostate cancer diagnosis based on cascaded convolutional neural networks[J]. Chinese J Magn Reson, 2020, 37(2):152-161. 刘可文, 刘紫龙, 汪香玉, 等. 基于级联卷积神经网络的前列腺磁共振图像分类[J]. 波谱学杂志, 2020, 37(2):152-161. [17] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. Unet++:A nested u-net architecture for medical image segmentation[C]. 4th Deep Learning in Medical Image Analysis (DLMIA) workshop, Computer Vision and Pattern Recognition, 2018. arXiv:1807.10165 [18] RONNEBERGER O, FISCHER P, BROX T. U-net:Convolutional networks for biomedical image segmentation[C]. MICCAI 2015, Computer Vision and Pattern Recognition, Cham, 2015. arXiv:1505.04597. [19] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017:2261-2269. [20] DOU Q, CHEN H, JIN Y M, et al. 3D deeply supervised network for automatic liver segmentation from CT volumes[C]. MICCAI 2016, Computer Vision and Pattern Recognition, 2016, arXiv:1607.00582. [21] LEE C Y, XIE S N, GALLAGHER P, et al. Deeply-supervised nets[C]//Artificial Intelligence and Statistics. 2015. arXiv:1409.5185. [22] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. J Mach Learn Res, 2014, 15(1):1929-1958. [23] JENKINSON M, BECKMANN C F, BEHRENS T E J, et al. FSL[J]. Neuroimage, 2012, 62(2):782-790. |