[1] ZHAO J, XIANG Y. Chin J Oncol Prev and Treat, 2014, 6(2):105-108. 赵静, 向阳. 绒癌耐药机制的研究现状[J]. 中国癌症防治杂志, 2014, 6(2):105-108. [2] HOEKSTRA A V, LURAIN J R, RADEMAKER A W, et al. Gestational trophoblastic neoplasia-treatment outcomes[J]. Obstet Gynecol, 2008, 112(2):251-258. [3] SANTABALLA A, GARCIA Y, HERRERO A, et al. SEOM clinical guidelines in gestational trophoblastic disease (2017)[J]. Clin Transl Oncol, 2018, 20(1):38-46. [4] LURAIN J R, NEJAD B. Secondary chemotherapy for high-risk gestational trophoblastic neoplasia[J]. Gynecol Oncol, 2005, 97(2):618-623. [5] LURAIN J R, SINGH D K, SCHINK J C. Primary treatment of metastatic high-risk gestational trophoblastic neoplasia with EMA-CO chemotherapy[J]. J Reprod Med, 2006, 51(10):767-772. [6] ABRAO R A, DE ANDRADE J M, TIEZZI D G, et al. Treatment for low-risk gestational trophoblastic disease:comparison of single-agent methotrexate, dactinomycin and combination regimens[J]. Gynecol Oncol, 2008, 108(1):149-153. [7] CUI Z M, XIANG Y, YANG X Y, et al. The establishment of the drug resistant cell lines and the study on the mechanism of acquired drug resistance in choriocarcinoma[J]. Prog Obstet Gynecol, 2001, 10(5):333-336. 崔竹梅, 向阳, 杨秀玉, 等. 绒癌耐药细胞系的建立及获得性耐药机制的研究[J]. 现代妇产科进展, 2001, 10(5):333-336. [8] CUI Z M, XIANG Y, YANG X Y, et al. Establishment of the drug resistant cell line of choriocarcinoma and the reversal of drug resistance by transfection of human interleukin 2 gene[J]. Chin J Obstet Gynecol, 2001, 36(9):549-553. 崔竹梅, 向阳, 杨秀玉, 等. 绒毛膜癌耐药细胞系的建立及人白细胞介素2基因转染后对其多药耐药性的逆转作用[J]. 中华妇产科杂志, 2001, 36(9):549-553. [9] FENG F Z, XIANG Y, ZHANG W G, et al. In vitro reversal of multidrug resistance by transduction of human tumor necrosis factor-αinto drug resistant cell line of choriocarcinoma[J]. Tumor, 2003, 23(4):283-286. 冯凤芝, 向阳, 张卫光, 等. 人肿瘤坏死因子-α基因转导绒癌耐药细胞系体外耐药逆转的研究[J]. 肿瘤, 2003, 23(4):283-286. [10] WU J H, WANG D S. CLIC1 induces drug resistance in human choriocarcinoma through positive regulation of MRP1[J]. Oncol Res, 2017, 25(6):863-871. [11] SMITH A G, MACLEOD K F. Autophagy, cancer stem cells and drug resistance[J]. J Pathol, 2019, 247(5):708-718. [12] SHEN Y, YANG J J, ZHAO J, et al. The switch from ER stress-induced apoptosis to autophagy via ROS-mediated JNK/p62 signals:A survival mechanism in methotrexate-resistant choriocarcinoma cells[J]. Exp Cell Res, 2015, 334(2):207-218. [13] ZHAO J, XIANG Y, XIAO C J, et al. AKR1C3 overexpression mediates methotrexate resistance in choriocarcinoma cells[J]. Int J Med Sci, 2014, 11(11):1089-1097. [14] HANAHAN D, WEINBERG R A. Hallmarks of cancer:the next generation[J]. Cell, 2011, 144(5):646-674. [15] HEIDEN M G V, CANTLEY L C, THOMPSON C B. Understanding the warburg effect:the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930):1029-1033. [16] LI H D, STOKES W, CHATER E, et al. Decreased glutathione biosynthesis contributes to EGFR T790M-driven erlotinib resistance in non-small cell lung cancer[J]. Cell Discov, 2016, 2:16031. [17] HU Y L, HAO F H, WANG Y L. NMR-based metabonomic analyses on spleen tissues of 4T1 tumor-bearing mice subjected to chemotherapies with different drug delivery strategies[J]. Chinese J Magn Reson, 2018, 35(1):8-21. 胡依黎, 豪富华, 王玉兰. 基于NMR的4T1荷瘤小鼠脾脏受不同给药方式影响的代谢组学研究[J]. 波谱学杂志, 2018, 35(1):8-21. [18] SONG Y P, LI N, XUE H S, et al. Metabonomics analysis of brown adipose and white adipose tissues[J]. Chinese J Magn Reson, 2016, 33(2):208-223. 宋懿朋, 李宁, 薛海斯, 等. 棕色脂肪组织和白色脂肪组织的代谢组学研究[J]. 波谱学杂志, 2016, 33(2):208-223. [19] LIU Z G, WANG L M, ZHANG L M, et al. Metabolic characteristics of 16HBE and A549 cells exposed to different surface modified gold nanorods[J]. Adv Healthc Mater, 2016, 5(18):2363-2375 [20] CLOAREC O, DUMAS M E, CRAIG A, et al. Statistical total correlation spectroscopy:an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets[J]. Anal Chem, 2005, 77(5):1282-1289. [21] WISHART D S, FEUNANG Y D, MARCU A, et al. HMDB 4.0:the human metabolome database for 2018[J]. Nucleic Acids Res, 2018, 46(D1):D608-D617. [22] CLOAREC O, DUMAS M E, TRYGG J, et al. Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies[J]. Anal Chem, 2005, 77(2):517-526. [23] XIA J G, WISHART D S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst[J]. Nat Protoc, 2011, 6(6):743-760. [24] GIACCO F, BROWNLEE M. Oxidative stress and diabetic complications[J]. Circ Res, 2010, 107(9):1058-1070. [25] QIU F, ZHANG Y Q. Metabolic effects of mulberry branch bark powder on diabetic mice based on GC-MS metabolomics approach[J]. Nutr Metab, 2019, 16:10. [26] GONZALEZ P S, O'PREY J, CARDACI S, et al. Mannose impairs tumour growth and enhances chemotherapy[J]. Nature, 563:719-723. [27] SOUSA C M, BIANCUR D E, WANG X, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion[J]. Nature, 2016, 536(7617):479-483. [28] ABOAGYE E O, BHUJWALLA Z M. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells[J]. Cancer Res, 1999, 59(1):80-84. [29] FAGONE P, JACKOWSKI S. Phosphatidylcholine and the CDP-choline cycle[J]. BBA-Mol Cell Biol L, 2013, 1831(3):523-532. |