Chinese Journal of Magnetic Resonance ›› 2016, Vol. 33 ›› Issue (1): 1-26.doi: 10.11938/cjmr20160101
Previous Articles Next Articles
LI Hua1, Yuji O. KAMATARI2, Ryo KITAHARA3, Kazuyuki AKASAKA4
Received:
2015-07-22
Revised:
2016-01-21
Online:
2016-03-05
Published:
2016-03-05
CLC Number:
LI Hua, Yuji O. KAMATARI, Ryo KITAHARA, Kazuyuki AKASAKA. High-Pressure NMR for Studying Protein Structure and Dynamics[J]. Chinese Journal of Magnetic Resonance, 2016, 33(1): 1-26.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Bridgman P W. The coagulation of albumen by pressure[J]. J Biol Chem, 1914, 19(4): 511-512.[2] Suzuki K. Studies on the kinetics of protein denaturation under high pressure[J]. Rev Phys Chem Japan, 1960, 29(2): 91-98.[3] Brandts J F, Oliveira R J, Westort C. Thermodynamics of protein denaturation. Effect of pressure on the denaturation on ribonuclease A[J]. Biochemistry, 1970, 9(4): 1 038-1 047.[4] Hawley S A. Reversible pressure-temperature denaturation of chymotrypsinogen[J]. Biochemistry, 1971, 10(13): 2 436-2 442.[5] Zipp A, Kauzmann W. Pressure denaturation of metmyoglobin[J]. Biochemistry, 1973, 12(21): 4 217-4 228.[6] Panick G, Vidugiris G, Malessa R, et al. Exploring the temperature-pressure phase diagram of Staphylococcal nuclease[J]. Biochemistry, 1999, 38(13): 4 157-4 164.[7] Lassalle M W, Yamada H, Akasaka K. The pressure-temperature free energy-landscape of Staphylococcal nuclease monitored by 1H NMR[J]. J Mol Biol, 2000, 298(2): 293-302.[8] Weber G, Drickamer H G. The effect of high pressure upon proteins and other biomolecules[J]. Q Rev Biophys, 1983, 16(1): 89-112.[9] Frauenfelder H, Alberding N A, Ansari A, et al. Proteins and pressure[J]. J Phys Chem 1990, 94(3): 1 024-1 037.[10] Wagner G. Activation volumes for the rotational motion of interior aromatic rings in globular proteins determined by high resolution 1H NMR at variable pressure[J]. FEBS Lett, 1980, 112(2): 280-284.[11] Morishima I, Ogawa S, Yamada H. High-pressure proton nuclear magnetic resonance studies of hemoproteins. Pressure-induced structural change in heme environments of myoglobin, hemoglobin, and horseradish peroxidase[J]. Biochemistry, 1980, 19(8): 1 569-1 575.[12] Jonas J, Jonas A. High-pressure NMR spectroscopy of proteins and membranes[J]. Rev Biophys Biomol Struct, 1994, 23: 287-318.[13] Royer C A, Hinck A P, Loh S N, et al. Effects of amino acid substitutions on the pressure denaturation of Staphylococcal nuclease as monitored by fluorescence and nuclear magnetic resonance spectroscopy[J]. Biochemistry, 1993, 32(19): 5 222-5 232.[14] Fuentes E J, Wand A J. Local stability and dynamics of apocytochrome b562 examined by the dependence of hydrogen exchange on hydrostatic pressure[J]. Biochemistry, 1998, 37(28): 9 877-9 883.[15] Jonas J, Ballard L, Nash D. High-resolution, high-pressure NMR studies of proteins[J]. Biophys J, 1998, 75(1): 445-452.[16] Jonas J. High-resolution nuclear magnetic resonance studies of proteins[J]. Biochim Biophys Acta, 2002, 1 595(12): 145-159.[17] Akasaka K, Yamada H. On-line cell high-pressure nuclear magnetic resonance technique: Application to protein studies[J]. Methods Enzymol, 2002, 338: 134-146.[18] Kamatari Y O, Kitahara R, Yamada H, et al. High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins[J]. Methods, 2004, 34(1): 133-143.[19] Akasaka K. Probing conformational fluctuation of proteins by pressure perturbation[J]. Chem Rev, 2006, 106 (5): 1 814-1 835.[20] Li H, Akasaka K. Conformational fluctuations of proteins revealed by variable pressure NMR[J]. Biochim Biophys Acta, 2006, 1 764(3): 331-345.[21] Lassalle M W, Akasaka K. The use of high-pressure nuclear magnetic resonance to study protein folding[J]. Methods Mol Biol, 2007, 350: 21-38.[22] Akasaka K, Kitahara R, Kamatari Y O. Exploring the folding energy landscape with pressure[J]. Arch Biochem Biophys, 2013, 531(1, 2): 110-115.[23] Kitahara R, Hata K, Li H, et al. Pressure-induced chemical shifts as probes for conformational fluctuations in proteins[J]. Prog Nucl Magn Reson Spectrosc, 2013, 71: 35-58.[24] Akasaka K. Highly fluctuating protein structures revealed by variable-pressure nuclear magnetic resonance[J]. Biochemistry, 2003, 42(37): 10 875-10 885.[25] Gekko K, Hasegawa Y. Compressibility-structure relationship of globular proteins[J]. Biochemistry, 1986, 25(21): 6 563-6 571.[26] Kundrot C E, Richards F M. Crystal structure of hen egg-white lysozyme at a hydrostatic pressure of 1000 atmospheres[J]. J Mol Biol, 1987, 193(1): 157-170..[27] Urayama P, Phillips G N, Gruner S M. Probing substates in sperm whale myoglobin using high-pressure crystallography[J]. Structure, 2002, 10(1): 51-60.[28] Fourme R, Girard E, and Akasaka K. High-pressure macromolecular crystallography and NMR: Status, achievements and prospects[J]. Curr Opin Struct Biol, 2012, 22(5): 636-642.[29] Li H, Yamada H, Akasaka K. Effect of pressure on individual hydrogen bonds in proteins. Basic Pancreatic Trypsin Inhibitor[J]. Biochemistry, 1998, 37(5): 1 167-1 173.[30] Li H, Yamada H, Akasaka K. Effect of pressure on the tertiary structure and dynamics of folded basic pancreatic trypsin inhibitor[J]. Biophys J, 1999, 77(5): 2 801-2 812.[31] Woodward C K, Hilton B D. Hydrogen exchange kinetics and internal motions in proteins and nucleic acids[J]. Annu Rev Biophys Bioeng, 1979, 8: 99-127.[32] Lee Y H, Goto Y. Kinetic intermediates of amyloid fibrillation studied by hydrogen exchange methods with nuclear magnetic resonance[J]. Biochim Biophys Acta, 2012, 1 824(12): 1 307-1 323.[33] Korzhnev D M, Kay L E. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding[J]. Acc Chem Res, 2008, 41(3): 442-451.[34] Bouvignies G, Vallurupalli P, Hansen D F, et al. Solution structure of a minor and transiently formed state of a T4 lysozyme mutant[J]. Nature, 2011, 477(7 362): 111-114.[35] Meinhold D W, Wright P E. Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion[J]. Proc Natl Acad Sci U S A, 2011, 108(22): 9 078-9 083.[36] Wen Yi(文祎), Lin Dong-hai(林东海). Protein dynamics studied by NMR spin relaxation(基于NMR自旋弛豫技术的蛋白质动力学研究)[J]. Chinese J Magn Reson(波谱学杂志), 2012, 29(2): 288-306.[37] Clore G M, Tang C, Iwahara J. Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement[J]. Curr Opin Struct Biol, 2007, 17(5): 603-616.[38] Tang C, Louis J M, Aniana A, et al. Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease[J]. Nature. 2008, 455(7 213): 693-696.[39] Liu Zhu(刘主), Tang Chun(唐淳). Paramagnetic relaxation enhancement—A tool for visualizing transient protein structures(顺磁弛豫增强技术与蛋白质瞬态结构)[J]. Chinese J Magn Reson(波谱学杂志), 2011, 28(3): 301-316.[40] Atkins P W. The Elements of Physical Chemistry[M]. 3rd ed. Oxford: Oxford University Press, 1993.[41] Yamada H, Nishikawa K, Honda M, et al. Pressure-resisting cell for high-pressure, high-resolution nuclear magnetic resonance measurements at very high magnetic fields[J]. Rev Sci Instrum, 2001, 72(2): 1 463-1 471.[42] Urbauer J L, Ehnhardt M R, Bieber R J, et al. High-resolution triple-resonance NMR spectroscopy of a novel calmodulin·peptide complex at kilobar pressures[J]. J Am Chem Soc, 1996, 118(45): 11 329-11 330.[43] Arnold M R, Kremer W, Luedemann H D, et al. 1H-NMR parameters of common amino acid residues measured in aqueous solutions of the linear tetrapeptides Gly-Gly-X-Ala at pressures between 0.1 and 200 MPa[J]. Biophys Chem, 2002, 96(2-3): 129-140.[44] Nisius L, Grzesiek S. Key stabilizing elements of protein structure identified through pressure and temperature perturbation of its hydrogen bond network[J]. Nat Chem, 2012 4(9): 711-717.[45] Roche J, Ying J, Maltsev A S, et al. Impact of hydrostatic pressure on an intrinsically disordered protein: A high-pressure NMR study of a-synuclein[J]. Chembiochem, 2013, 14(14): 1 754-1 761.[46] Kitahara R, Royer C, Yamada H, et al. Equilibrium and pressure-jump relaxation studies of the conformational transitions of P13MTCP1[J]. J Mol Biol, 2002, 320(3): 609-628.[47] Kamatari Y O, Yokoyama S, Tachibana H, et al. Pressure-jump NMR study of dissociation and association of amyloid protofibrils[J]. J Mol Biol, 2005, 349(5): 916-921.[48] Kremer W, Arnold M, Munte C E, et al. Pulsed pressure perturbations, an extra dimension in NMR spectroscopy of proteins[J]. J Am Chem Soc, 2011, 133(34): 13 646-13 651.[49] Akasaka K, Naito A, Nakatani H. Temperature-jump NMR study of protein folding: Ribonuclease A at low pH[J]. J Biomol NMR, 1991, 1(1): 65-70.[50] Wagner G, Pardi A, Wuthrich K. Hydrogen bond length and proton NMR chemical shifts in proteins[J]. J Am Chem Soc, 1983, 105(18): 5 948-5 949.[51] Pardi A, Wagner G, Wuthrich K. Protein conformation and proton nuclear-magnetic-resonance chemical shifts[J]. Eur J Biochem, 1983, 137(3): 445-454.[52] Asakura T, Taoka K, Demura M, et al. The relationship between amide proton chemical shifts and secondary structure in proteins[J]. J Biomol NMR, 1995, 6(3): 227-236.[53] Kamatari Y O, Yamada H, Akasaka K, et al. Response of native and denatured hen lysozyme to high pressure studied by 15N/1H NMR spectroscopy[J]. Eur J Biochem, 2001, 268(6): 1 782-1 793.[54] Dingley A J, Grzesiek S. Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings[J]. J Am Chem Soc, 1998, 120(33): 8 293-8 297.[55] Cordier F, Grzesiek S. Direct observation of hydrogen bonds in proteins by interresidue 3hJNC' scalar couplings[J]. J Am Chem Soc, 1999, 121(7): 1 601-1 602.[56] Cornilescu G, Hu J S, Bax A. Identification of the hydrogen bonding network in a protein by scalar couplings[J]. J Am Chem Soc, 1999, 121(12): 2 949-2 950.[57] Cornilescu G, Ramirez B E, Frank M K, et al. Correlation between 3hJNC' and hydrogen bond length in proteins[J]. J Am Chem Soc, 1999, 121(26): 6 275-6 279.[58] Li H, Yamada H, Akasaka K, et al. Pressure alters electronic orbital overlap in hydrogen bonds[J]. J Biomol NMR, 2000, 18(3): 207-216.[59] Akasaka K, Li H, Yamada H, et al. Pressure response of protein backbone structure. Pressure-induced amide 15N chemical shifts in BPTI[J]. Protein Sci, 1999, 8(10): 1 946–1 953.[60] Akasaka K, Tezuka T, Yamada H. Pressure-induced changes in the folded structure of lysozyme[J]. J Mol Biol, 1997, 271(5): 671-678.[61] Refaee M, Tezuka T, Akasaka K, et al. Pressure-dependent changes in the solution structure of hen egg-white lysozyme[J]. J Mol Biol, 2003, 327(4): 857-865.[62] Williamson M P, Akasaka K, Refaee M. The solution structure of bovine pancreatic trypsin inhibitor at high pressure[J]. Protein Sci, 2003, 12(9): 1 971-1 979.[63] Iwadate M, Asakura T, Dubovskii P V, et al. Pressure-dependent changes in the structure of the melittin a-helix determined by NMR[J]. J Biomol NMR, 2001, 19(2): 115-124.[64] Wilton D J, Ghosh M, Chary K V, et al. Structural change in a B-DNA helix with hydrostatic pressure[J]. Nucleic Acids Res, 2008, 36(12): 4 032-4 037.[65] Wilton D J, Kitahara R, Akasaka K, et al. Pressure-dependent 13C chemical shifts in proteins: Origins and applications[J]. J Biomol NMR, 2009, 44(1): 25-33.[66] Wilton D J, Kitahara R, Akasaka K, et al. Pressure-dependent structure changes in barnase on ligand binding reveal intermediate rate fluctuations[J]. Biophys J, 2009, 97(5): 1 482-1 490.[67] Sareth S, Li H, Yamada H, et al. Rapid internal dynamics of BPTI is insensitive to pressure. 15N spin relaxation at 2 kbar[J]. FEBS Lett, 2000, 470(1): 11-14.[68] Orekhov V Y, Dubovskii P V, Yamada H, et al. Pressure effect on the dynamics of an isolated a-helix studied by 15N-1H NMR relaxation[J]. J Biomol NMR, 2000, 17(3): 257-263.[69] Campbell I D, Dobson C M, Moore G R, et al. Temperature dependent molecular motion of a tyrosine residue of ferrocytochrome C[J]. FEBS Lett, 1976, 70(1): 96-100.[70] Hattori M, Li H, Yamada H, et al. Infrequent cavity-forming fluctuations in HPr from Staphylococcus carnosus revealed by pressure- and temperature-dependent tyrosine ring flips[J]. Protein Sci, 2004, 13(12): 3 104-3 114.[71] Lumry R, Rosenberg A. Mobile-defect hypothesis of protein function[J]. Coll Int CNRS L'Eau Syst Biol, 1975, 246: 55-63.[72] Pain R H. New light on old defects[J]. Nature, 1987, 326(6 110): 247-247.[73] Akasaka K, Li H. Low-lying excited states of proteins revealed from nonlinear pressure shifts in 1H and 15N NMR[J]. Biochemistry, 2001, 40(30): 8 665-8 671.[74] Inoue K, Maurer T, Yamada H, et al. High-pressure NMR study of the complex of a GTPase Rap1A with its effector RalGDS. A conformational switch in RalGDS revealed from non-linear pressure shifts[J]. FEBS Lett, 2001, 506(3): 180-184.[75] Kuwata K, Li H, Yamada H, et al. High pressure NMR reveals a variety of fluctuating conformers in b-lactoglobulin[J]. J Mol Biol, 2001, 305(5): 1 073-1 083.[76] Collins M D, Hummer G, Quillin M L, et al. (2005) Cooperative water filling of a nonpolar protein cavity observed by high pressure crystallography and simulation[J]. Proc Natl Acad Sci U S A, 102(46): 16 668-16 671.[77] Kitahara R, Yamada H, Akasaka K, et al. High pressure NMR reveals that apomyoglobin is an equilibrium mixture from the native to the unfolded[J]. J Mol Biol, 2002, 320(2): 311-319.[78] Kitahara R, Sareth S, Yamada H, et al. High pressure NMR reveals active-site hinge motion of folate-bound Escherichia coli dihydrofolate reductase[J]. Biochemistry, 2000, 39(42): 12 789-12 795.[79] Kitahara R, Yamada H, Akasaka K. Two folded conformers of ubiquitin revealed by high-pressure NMR[J]. Biochemistry, 2001, 40(45): 13 556-13 563.[80] Kuwata K, Li H, Yamada H, et al. Locally disordered conformer of the hamster prion protein: A crucial intermediate to PrPSc? [J] Biochemistry, 2002, 41(41): 12 277-12 283.[81] Kitahara R, Simorellis A K, Hata K, et al. A delicate interplay of structure, dynamics, and thermodynamics for function: a high pressure NMR study of outer surface protein A[J]. Biophys J, 2012, 102(4): 916-926.[82] Roche J, Caro J A, Norberto D R, et al. Cavities determine the pressure unfolding of proteins[J]. Proc Natl Acad Sci U S A, 2012, 109(18): 6 945-6 950.[83] Lassalle M W, Yamada H, Morii H, et al. Filling a cavity dramatically increases pressure stability of the c-Myb R2 subdomain[J]. Proteins, 2001, 45(1): 96-101.[84] Kitahara R, Okuno A, Kato M, et al. Cold denaturation of ubiquitin at high pressure[J]. Magn Reson Chem, 2006, 44(S1): S108-S113.[85] Kamatari Y O, Smith L J, Dobson C M, et al. Cavity hydration as a gateway to unfolding: An NMR study of hen lysozyme at high pressure and low temperature[J]. Biophys Chem, 2011, 156(1): 24-30.[86] Narayanan S P, Maeno A, Matsuo H, et al. Extensively hydrated but folded: A novel state of globular proteins stabilized at high pressure and low temperature[J]. Biophys J, 2012, 102(2): 8-10.[87] Garcia C R, Amaral J A, Abrahamsohn P, et al. Dissociation of F-actin induced by hydrostatic pressure[J]. Eur J Biochem, 1992, 209(3): 1 005-1 011.[88] Niraula T N, Konno T, Li H, et al. Pressure-dissociable reversible assembly of intrinsically denatured lysozyme is a precursor for amyloid fibrils[J]. Proc Natl Acad Sci U S A, 2004, 101(12): 4 089-4 093.[89] Akasaka K, Latif A R, Nakamura A, et al. Amyloid protofibril is highly voluminous and compressible[J]. Biochemistry, 2007, 46(37): 10 444-10 450.[90] Kitahara R, Akasaka K. Close identity of a pressure-stabilized intermediate with a kinetic intermediate in protein folding[J]. Proc Natl Acad Sci U S A, 2003, 100(6): 3 167-3 172.[91] Kitahara R, Yokoyama S, Akasaka K. NMR snapshots of a fluctuating protein structure: ubiquitin at 30 bar-3 kbar[J]. J Mol Biol, 2005, 347(2): 277-285.[92] Nicholls A, Sharp K A, Honig B. Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons[J]. Proteins: Struct Funct Genet, 1991, 11(4): 281-296.[93] Imai T, Sugita Y. Dynamic correlation between pressure-induced protein structural transition and water penetration[J]. J Phys Chem B, 2010, 114(6): 2 281-2 286.[94] Fu Y, Wand A J. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure[J]. J Biomol NMR, 2013, 56(4): 353-357. |
[1] | WANG Dan, LIU Yi-xiang, KOU Xin-hui, LIU Mai-li, JIANG Ling. NMR Studies on Key Residues That Affect Phosphorylation and Dephosphorylation Processes of Bacterial Response Regulator RR468 [J]. Chinese Journal of Magnetic Resonance, 2017, 34(4): 397-407. |
[2] | DAI Chen-ye, ZHANG Ze-ting, LIU Mai-li, LI Cong-gang. Application of NMR in the Studies of Structure and Interactions of α-Synuclein [J]. Chinese Journal of Magnetic Resonance, 2016, 33(1): 153-167. |
[3] | HU Yun-fei1,2,HE Peng3,WU Yu-jie1,3,JIN Chang-wen1,2,3,4*. Solution Structure of Bacillus subtilis Twin-Arginine Translocation TatAy Protein [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 291-307. |
[4] | WANG Gui-Fang, ZHANG Ze-Ting, XU Guo-Hua, LIU Xiao-Li, WU Qiong, BAI Jia, YE Yan-Sheng, LI Cong-Gang, LIU Mai-Li . 19F NMR Techniques and Their Applications in Protein Studies [J]. Chinese Journal of Magnetic Resonance, 2012, 29(4): 621-637. |
[5] | YAO Hong-Wei, FENG Yin-Gang, WANG Jin-Feng. Dimer Form of Archaeal Protein SSO6904 Identified by NMR [J]. Chinese Journal of Magnetic Resonance, 2012, 29(2): 224-230. |
[6] | LIU Zhu, TANG Chun. Paramagnetic Relaxation Enhancement——A Tool for Visualizing Transient Protein Structures [J]. Chinese Journal of Magnetic Resonance, 2011, 28(3): 301-316. |
[7] | Yan-Shi LIN , Ching-Hsia FANG, Shang-Wu DING. Studied with the Relaxation Measurement of Mixed Zero- and Double-Quantum Coherences of CαH Systems [J]. Chinese Journal of Magnetic Resonance, 2010, 27(3): 445-460. |
[8] | HU Yun-fei1, JIN Chang-wen1,2*. NMR Studies of Protein Solution Structures and Dynamics [J]. Chinese Journal of Magnetic Resonance, 2009, 26(2): 151-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||