[1] GUNTER P, SCHAEFER N, OTTING G, et al. POMA:a complete mathematica implementation of the NMR product operator formalism[J]. J Magn Reson A, 1993, 101(4):103-105. [2] SMITH S A, LEVANTE T O, MEIER B H, et al. Computer simulations in magnetic resonance:an object-oriented programming approach[J]. J Magn Reson A, 1994, 106(1):75-105. [3] ALLMAN T, BAIN A D, GARBOW J R. SIMPLTN:a program for the simulation of pulse NMR spectra[J]. J Magn Reson A, 1996, 123(1):26-31. [4] JERSCHOW A, MULLER N. Efficient simulation of coherence transfer pathway selection by phase cycling and pulsed field gradients in NMR[J]. J Magn Reson, 1998,134(1):17-29. [5] MERSI G H, CUPERLOVIC M, PALKE W E, et al. Pulsed field gradients in simulations of one-and two-dimensional NMR spectra[J]. J Magn Reson, 1999, 137(1):186-195. [6] JIN F Z, CHEN H W, ZHOU R X, et al. Experimental simulation of the Unruh effect on an nuclear magnetic resonance (NMR) quantum simulator[J]. Science China:Physics, Mechanics and Astronomy, 2016, 59(3):1-8. [7] TOSNER Z, ANDERSON R, STEVENSON B. SIMPSON:A general program for solid-state NMR spectroscopy[J]. J Magn Reson, 2000, 147(2):296-330. [8] SCHATS P. NMR Simulator[J]. J Chem Edu, 1988, 65(4):296-297. [9] NICOLAS P, FUSHMAN D, RUCHINSKY V, et al. The virtual NMR spectrometer:a computer program for efficient simulation of NMR experiments involving pulsed field gradients[J]. J Magn Reson. 2000, 145(2):262-275. [10] KEELER J. Understanding NMR spectroscopy[M]. London:Wiley, 2002:80-118. |