[1] CARO D D, LIGUORI C, PIETROSANTO A, et al. Hazelnut oil classification by NMR techniques[J]. IEEE T Instrum Meas, 2017, 66(5):928-934. [2] CARO D D, LIGUORI C, PIETROSANTO A, et al. Using a SVD-based algorithm for T2 spectrum calculation in TD-NMR application to detect hidden defects in hazelnuts[C]//Instrumentation and Measurement Technology Conference. IEEE, 2017:1-6. [3] KIRTIL E, OZTOP M H. 1H nuclear magnetic resonance relaxometry and magnetic resonance imaging and applications in food science and processing[J]. Food Eng Rev, 2016, 8(1):1-22. [4] MEMOLI A, ALBANESE D, ESTI M, et al. Effect of bug damage and mold contamination on fatty acids and sterols of hazelnut oil[J]. Eur Food Res Tech, 2017, 243(4):651-658. [5] WANG X H, SUN P, ZHANG X, et al. Application of magnetic resonance technique to quality and safety evaluation of food[J]. Chinese J Magn Reson, 2017, 34(2):245-256. 王小花, 孙鹏, 张许, 等. 磁共振技术在食品质量与安全研究中的应用[J]. 波谱学杂志, 2017, 34(2):245-256. [6] ZHOU F D, GAO X, CAI J B, et al. Determination of treated and control wood on fiber saturation point by low-field NMR technology[J]. Chinese J Magn Reson, 2017, 34(1):108-114. 周凡丁, 高鑫, 蔡家斌, 等. 利用低温NMR技术测定木材及其热处理材纤维饱和点[J]. 波谱学杂志, 2017, 34(1):108-114. [7] GAUNKAR N G P, NLEBEDIM I C, BULU I, et al. Broadband analysis of response from magnetic cores used in inductive sensors for pulsed nuclear magnetic resonance applications[J]. IEEE T Magn, 2016, 52(7):1-4. [8] WANG H M, NIE S D, WANG Y J. The research progress of de-noising methods in low-field NMR signal[J]. Chinese Journal of Medical Physics, 2013, (4):47-51. 王红敏, 聂生东, 王远军. 低场核磁共振信号降噪方法研究进展[J]. 中国医学物理学杂志, 2013, (4):47-51. [9] VEER K, AGARWAL R. Wavelet and short-time Fourier transform comparison-based analysis of myoelectric signals[J]. J Appl Stat, 2015, 42(7):1591-1601. [10] MALLAT S G. A theory for multiresolution signal decomposition:the wavelet representation[J]. IEEE T Pattern Anal, 1989, 11(7):674-693. [11] YAN T F, YAN T L. Radio spectrum multi-domains analysis based on STFT[J]. Information Technology, 2010, 11:163-165. 尹天峰, 颜挺利. 基于STFT的无线电频谱信号的多域分析[J]. 信息技术, 2010, 11:163-165. [12] DU Q Y, CHANG Y, QIAN S S, et al. Comparison of time-frequency analysis methods for radio frequency pulses used in magnetic resonance[J]. Chinese J Magn Reson, 2016, 33(4):646-654. 杜庆阳, 常严, 钱嵩松, 等. 针对磁共振射频脉冲的时频域分析方法比较研究[J]. 波谱学杂志, 2016, 33(4):646-654. [13] DONOHO D L, JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage[J]. J Am Stat Assoc, 1995, 90(432):1200-1224. [14] WITKIN A P. Scale-space filtering[C]//International Joint Conference on Artificial Intelligence. DBLP, 1983:1019-1022. [15] DONOHO D L. De-noising by soft-thresholding[J]. IEEE T Inform Theory, 1995, 41(3):613-627. [16] XIE Q M, XIAO L Z, LIAO G Z. Application of SURE algorithm to echo train de-noising in low field NMR logging[J]. Chinese Journal of Geophysics, 2010, 53(11):2776-2783. 谢庆明, 肖立志, 廖广志. SURE算法在核磁共振信号去噪中的实现[J]. 地球物理学报, 2010, 53(11):2776-2783. [17] MA S B, KONG L, CHEN J J. An improved NMR signal de-noising algorithm based on wavelet transform[J]. Journal of Computational Information Systems, 2011, 7(13):4651-4659. [18] XIAO L Z, XIE Q M, XIE R H, et al. Noise reduction for NMR logging with regularization-heursure algorithm[J]. Journal of Computational Information Systems, 2013, 56(11):3943-3952. [19] PAN Q, MENG J L, ZHANG L, et al. Wavelet filtering method and its application[J]. Journal of Electronics & Information Technology, 2007, 29(1):236-242. 潘泉, 孟晋丽, 张磊, 等. 小波滤波方法及应用[J]. 电子与信息学报, 2007, 29(1):236-242. [20] XIE R H, WU Y B, LIU K, et al. Using wavelet domain adaptive filtering to improve signal to noise ratio of nuclear magnetic resonance log data from tight gas sands[J]. Geophys Prospect, 2016, 64(3):689-699. [21] MALLAT S, ZHONG S F. Characterization of signals from multiscale edges[J]. IEEE T Pattern Anal, 1992, 14(7):710-732. [22] MALLAT S, HWANG W L. Singularity detection and processing with wavelets[J]. IEEE T Inform Theory, 1992, 38(2):617-643. [23] ZHANG X F, XU D Z, QI Z F. Denoising algorithm based on modulus maximum wavelet field[J]. Journal of Data Acquisition and Processing, 2003, 18(3):315-318. 张小飞, 徐大专, 齐泽锋. 基于模极大值小波域的去噪算法研究[J]. 数据采集与处理, 2003, 18(3):315-318. [24] WANG X W, DONG G B, XIE G H. A new de-noising method of NMR FID signals based on wavelet transform[J]. Nuclear Electronics & Detection Technology, 2008, 28(2):365-370. 王希武, 董光波, 谢桂海. 基于小波变换的核磁共振FID信号的去噪方法研究[J]. 核电子学与探测技术, 2008, 28(2):365-370. [25] GAO B K, ZHOU Y H, SUN L C, et al. Modulus maxima wavelet denoising and alternating projection reconstruction of logging signals[J]. Control and Instruments in Chemical Industry, 2015, 42(9):993-996. [26] SUN S Q, MENG Q Y, FANG X C, et al. Noise cancellation algorithm for surface magnetic resonance signals based on self-adaption and reconstruction of wavelet modulus maximum value[J]. Journal of Jilin University Engineering and Technology Edition, 2015, 45(5):1642-1651. 孙淑琴, 孟庆云, 方秀成, 等. 基于自适应和小波模极大值重构的地面核磁共振信号噪声压制方法[J]. 吉林大学学报(工), 2015, 45(5):1642-1651. [27] SENDUR L, SELESNICK I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency[J]. IEEE T Signal Process, 2002, 50(11):2744-2756. [28] SAEEDI J, MORADI M H, ABEDI A. Image denoising based on fuzzy and intra-scale dependency in wavelet transform domain[C]//International Conference on Pattern Recognition. IEEE Computer Society, 2010:2672-2675. [29] PLACIDI G, ALECCI M, SOTGIU A. Post-processing noise removal algorithm for magnetic resonance imaging based on edge detection and wavelet analysis[J]. Physics in Medicine & Biology, 2003, 48(13):1987-1995. [30] XU Y S, WEAVER J B, HEALY D M J, et al. Wavelet transform domain filters:a spatially selective noise filtration technique[J]. IEEE T Image Process, 1994, 3(6):747-758. [31] ZHANG L, BAO P. Denoising by spatial correlation thresholding[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2003, 13(6):535-538. [32] BAO P, ZHANG D. Noise reduction for magnetic resonance images via adaptive multiscale products thresholding[J]. IEEE T Medical Imaging, 2003, 22(9):1089-1099. [33] CHANG S G, YU B, VETTERLI M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE T Image Process, 2000, 9(9):1532-1546. [34] PAN Q, ZHANG L, DAI G Z, et al. Two denoising methods by wavelet transform[J]. IEEE T Signal Process, 1999, 47(12):3401-3406. [35] ZHENG C X, ZHANG Y M. Method for eliminating noise in nuclear magnetic resonance signals based on wavelet transformation[J]. Analytical Instrumentation, 2007, 26(1):43-46. 郑传行, 张一鸣. 核磁共振信号的小波变换消噪方法[J]. 分析仪器, 2007, 26(1):43-46. [36] ZHENG C, ZHANG Y M. Low-field pulsed NMR signal denoising based on wavelet transform[C]//Signal Processing and Communications Applications, 2007. Siu 2007. IEEE, 2007:1-4. [37] GE X M, FAN Y R, LI J T, et al. Noise reduction of nuclear magnetic resonance (NMR) transversal data using improved wavelet transform and exponentially weighted moving average (EWMA)[J]. J Magn Reson, 2015, 251:71-83. [38] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment:From error visibility to structural similarity[J]. IEEE T Image Process, 2004, 13(4):600-612. |