[1] XU J, GORDON J I. Honor thy symbionts[J]. Proc Natl Acad Sci U S A, 2003, 100(18):10452-10459. [2] MARTIN F P, DUMAS M E, WANG Y L, et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model[J]. Mol Syst Biol, 2007, 3:112. [3] CLAUS S P, TSANG T M, WANG Y L, et al. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes[J]. Mol Syst Biol, 2008, 4:219. [4] WIKOFF W R, ANFORA A T, LIU J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites[J]. Proc Natl Acad Sci U S A, 2009, 106(10):3698-3703. [5] PARLESAK A, SCHAECKELER S, MOSER L, et al. Conjugated primary bile salts reduce permeability of endotoxin through intestinal epithelial cells and synergize with phosphatidylcholine in suppression of inflammatory cytokine production[J]. Crit Care Med, 2007, 35(10):2367-2374. [6] RAMIREZ-PEREZ O, CRUZ-RAMON V, CHINCHILLA-LOPEZ P, et al. The role of the gut microbiota in bile acid metabolism[J]. Ann Hepatol, 2017, 16(Suppl. 1:s3-105.):s15-s20. [7] SAYIN S I, WAHLSTROM A, FELIN J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist[J]. Cell Metab, 2013, 17(2):225-235. [8] WAHLSTROM A, SAYIN S I, MARSCHALL H U, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1):41-50. [9] STALEY C, WEINGARDEN A R, KHORUTS A, et al. Interaction of gut microbiota with bile acid metabolism and its influence on disease states[J]. Appl Microbiol Biotechnol, 2017, 101(1):47-64. [10] HOFMANN A F. The continuing importance of bile acids in liver and intestinal disease[J]. Arch Intern Med, 1999, 159(22):2647-2658. [11] RAO A, KOSTERS A, MELLS J E, et al. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice[J]. Sci Transl Med, 2016, 8(357):357ra122. [12] THOMAS C, PELLICCIARI R, PRUZANSKI M, et al. Targeting bile-acid signalling for metabolic diseases[J]. Nat Rev Drug Discov, 2008, 7(8):678-693. [13] NAGENGAST F, GRUBBEN M, VAN MUNSTER I. Role of bile acids in colorectal carcinogenesis[J]. Eur J Cancer, 1995, 31(7,8):1067-1070. [14] RAMALHO R M, VIANA R J, LOW W C, et al. Bile acids and apoptosis modulation:an emerging role in experimental Alzheimer's disease[J]. Trends Mol Med, 2008, 14(2):54-62. [15] WATANABE M, HOUTEN S M, WANG L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c[J]. J Clin Invest, 2004, 113(10):1408-1418. [16] JIANG C T, XIE C, LV Y, et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction[J]. Nat Commun, 2015, 6:10166. [17] XIE G X, WANG Y X, WANG X N, et al. Profiling of serum bile acids in a healthy Chinese population using UPLC-MS/MS[J]. J Proteome Res, 2015, 14(2):850-859. [18] BENNION L J, DROBNY E, KNOWLER W C, et al. Sex differences in the size of bile acid pools[J]. Metabolism, 1978, 27(8):961-969. [19] NICKEN P, HAMSCHER G, BREVES G, et al. Uptake of the colon carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by different segments of the rat gastrointestinal tract:its implication in colorectal carcinogenesis[J]. Toxicol Lett, 2010, 196(1):60-66. [20] YUAN B F, ZHU Q F, GUO N, et al. Comprehensive profiling of fecal metabolome of mice by integrated chemical isotope labeling-mass spectrometry analysis[J]. Anal Chem, 2018, 90(5):3512-3520. [21] GARCIA-CANAVERAS J C, DONATO M T, CASTELL J V, et al. Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method[J]. J Lipid Res, 2012, 53(10):2231-2241. [22] CHEN L, SONG K, WANG Y L. Effects of attenuated salmonella typhimurium infection on fecal metabonome in mice[J]. Chinese J Magn Reson, 2014, 31(3):349-363. 陈璐, 宋侃, 王玉兰. 感染减毒鼠伤寒沙门氏菌对小鼠粪样代谢组的影响-WIPM和Bruker 500 MHz核磁共振波谱仪检测结果的比较[J]. 波谱学杂志, 2014, 31(3):349-363. [23] WANT E J, COEN M, MASSON P, et al. Ultra performance liquid chromatography-mass spectrometry profiling of bile acid metabolites in biofluids:application to experimental toxicology studies[J]. Anal Chem, 2010, 82(12):5282-5289. [24] HU Y L, HAO F H, WANG Y L. NMR-based metabonomic analyses on spleen tissues of 4T1 tumor-bearing mice subjected to chemotherapies with different drug delivery strategies[J]. Chinese J Magn Reson, 2018, 35(1):8-21. 胡依黎, 豪富华, 王玉兰. 基于NMR的4T1荷瘤小鼠脾脏受不同给药方式影响的代谢组学研究[J]. 波谱学杂志, 2018, 35(1):8-21. [25] SONG Y P, LI N, XUE H S, et al. Metabonomics analysis of brown adipose and white adipose tissues[J]. Chinese J Magn Reson, 2016, 33(2):208-223. 宋懿朋, 李宁, 薛海斯, 等. 棕色脂肪组织和白色脂肪组织的代谢组学研究[J]. 波谱学杂志, 2016, 33(2):208-223. [26] TAKAHASHI S, FUKAMI T, MASUO Y, et al. Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans[J]. J Lipid Res, 2016, 57(12):2130-2137. [27] FALANY C N, JOHNSON M R, BARNES S, et al. Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase[J]. J Biol Chem, 1994, 269(30):19375-19379. [28] FALANY C, FORTINBERRY H, LEITER E, et al. Cloning, expression, and chromosomal localization of mouse liver bile acid CoA:amino acid N-acyltransferase[J]. J Lipid Res, 1997, 38(6):1139-1148. [29] ZHANG R, BARNES S, DIASIO R B. Differential intestinal deconjugation of taurine and glycine bile acid N-acyl amidates in rats[J]. Am J Physiol, 1992, 262(2):G351-G358. [30] MULLER V M, ZIETEK T, ROHM F, et al. Gut barrier impairment by high-fat diet in mice depends on housing conditions[J]. Mol Nutr Food Res, 2016, 60(4):897-908. [31] WU J F, XU W X, MING Z P, et al. Metabolic changes reveal the development of schistosomiasis in mice[J]. PLoS Negl Trop Dis, 2010, 4(8):e807. [32] WANG Y L, TANG H R, NICHOLSON J K, et al. A metabonomic strategy for the detection of the metabolic effects of chamomile (Matricaria recutita L.) ingestion[J]. J Agric Food Chem, 2005, 53(2):191-196. [33] TIAN Y, ZHANG L M, WANG Y L, et al. Age-related topographical metabolic signatures for the rat gastrointestinal contents[J]. J Proteome Res, 2012, 11(2):1397-1411. [34] RIDLON J M, KANG D J, HYLEMON P B. Bile salt biotransformations by human intestinal bacteria[J]. J Lipid Res, 2006, 47(2):241-259. [35] TIAN Y, TANG H R. Identification and structural determination of saccharides in rat feces[J]. Chinese J Magn Reson, 2012, 29(3):361-371. 田园, 唐惠儒. 大鼠粪样中几种糖类物质的结构确定[J]. 波谱学杂志, 2012, 29(3):361-371. [36] DEN BESTEN G D, VAN EUNEN K, GROEN A K, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. J Lipid Res, 2013, 54(9):2325-2340. [37] BACKHED F, LEY R E, SONNENBURG J L, et al. Host-bacterial mutualism in the human intestine[J]. science, 2005, 307(5717):1915-1920. [38] ZHAO Y, WU J F, LI J V, et al. Gut microbiota composition modifies fecal metabolic profiles in mice[J]. J Proteome Res, 2013, 12(6):2987-2999. [39] FRAHER M H, O'TOOLE P W, QUIGLEY E M. Techniques used to characterize the gut microbiota:a guide for the clinician[J]. Nat Rev Gastroenterol Hepatol, 2012, 9(6):312-322. |