[1] Guo Bin(郭宾), Dai Ren-ke(戴仁科). Current trends in analytical methodologies and experimental strategies for metabonomics(代谢组学及其研究策略和分析方法进展)[J]. Chinese Journal of Health Laboratory Technology(中国卫生检验杂志), 2007, 17(3): 554-563. [2] Tang Hui-ru(唐惠儒), Wang Yu-lan(王玉兰). Metabonomics(代谢组研究)[J]. Chinese Bulletin of Life Sciences(生命科学), 2007, 19(3), 272-280. [3] Nicholson J K, Lindon J C, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11): 1 181-1 189. [4] Xu Guo-wang(许国旺), Yang Jun(杨军). Recent advances in metabonomics(代谢组学及其研究进展)[J]. Chinese Journal of Chromatography(色谱), 2003, 21(4): 316-320. [5] Qiu Yu-jie(邱玉洁), Xia Sheng-an(夏圣安), Ye Chao-hui(叶朝辉), et al. Pattern recognition methods in biomedical magnetic resonance(生物医学核磁共振中的模式识别方法)[J]. Chinese J Magn Reson(波谱学杂志), 2005, 22(1): 99-111. [6] Hastie T, Tibshirani R, Friedman J, et al. The elements of statistical learning: data mining, inference and prediction[J]. The Mathematical Intelligencer, 2005, 27(2): 83-85. [7] Bradley P S, Mangasarian O L. Feature selection via concave minimization and support vector machines[J]. International Council for Machinery Lubrication, 1998, 98: 82-90. [8] Li T, Zhang C L, Ogihara M. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression[J]. Bioinformatics, 2004, 20(15): 2 429-2 437. [9] Guyon I, Elisseeff A. An introduction to variable and feature selection[J]. The Journal of Machine Learning Research, 2003, 3: 1 157-1 182. [10] Zhang Xue-Gong(张学工). Introduction to statistical learning theory and support vector machines (关于统计学习理论与支持向量机)[J]. Acta Automatica Sinica(自动化学报), 2000, 26(1): 32-42. [11] Chang C C, Lin C G. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology(TIST), 2011, 2(3): 27-66. [12] Guan W , Zhou M, Hampton C Y, et al. Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines[J]. BMC Bioinformatics, 2009, 10(1): 259-274. [13] Wu J F, Xu W X, Ming Z P, et al. Metabolic changes reveal the development of schistosomiasis in mice[J]. PLoS Neglected Tropical Diseases, 2010, 4(8): e807-818. [14] Haaland D M, Thomas E V. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information[J]. Anal Chem, 1988, 60(11): 1 193-1 202.. [15] Tobias R D. An introduction to partial least squares regression[J]. Proc. Ann. SAS Users Group Int. Conf, 1995, 20: 2-5. [16] Barker M, Rayens W. Partial least squares for discrimination[J]. J Chemometr, 2003, 17(3): 166-173. [17] Rosipal R, Trejo L J. Kernel partial least squares regression in reproducing kernel hilbert space[J]. The Journal of Machine Learning Research, 2009, 2: 97-123. [18] Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS)[J]. J Chemometr, 2002, 16(3): 119-128. [19] Bylesjö M, Rantalainen M, Nicholson J K, et al. K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space[J]. BMC Bioinformatics, 2008, 9(1): 106-113. [20] Tibshirani R, Hastie T, Narasimhan B, et al. Diagnosis of multiple cancer types by shrunken centroids of gene expression[J]. Proc Natl Acad Sci USA, 2002, 99(10): 6 567-6 572. [21] Smola A J, Schölkopf B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222. [22] Friedman J, Hastie T, Tibshirani R. Special invited paper additive logistic regression: A statistical view of boosting[J]. Annals of Statistics, 2000(2): 337-374. [23] Allwein E L, Schapire R E, Singer Y. Reducing multiclass to binary: A unifying approach for margin classifiers[J]. J Mach Learn Res, 2001, (1): 113-141. [24] Weston J, Watkins C. Technical Report CSD-TR-98-04 Multi-Class Support Vector Machines[C]. London: University of London, 1998. [25] Wang L, Shen X. On L1-norm multiclass support vector machines[J]. J Am Stat Assoc, 2007, 102(478): 583-594. [26] Wang Ding-cheng(王定成), Fang Ting-jian(方廷健), Tang Yi(唐毅) , et al. Review of support vector machines regression theory and control(支持向量机回归理论与控制的综述)[J]. Pattem Recognition and Aitificial Intelligence(模式识别与人工智能), 2003, 16(2): 192-197. [27] Yu H, Kim S. SVM Tutorial: Classification, regression and ranking[J]. Handbook of Natural Computing. Springer Berlin Heidelberg, 2012, (2): 479-506 [28] Zhu J, Rosset S, Hastie T, Tibshirani R. 1-norm support vector machines[J]. Advances in Neural Information Processing Systems, 2004, (1): 49-56. [29] Hastie T, Rosset S, Tibshirani R, et al. The entire regularization path for the support vector machine[J]. J Mach Learn Res, 2004, (5): 1 391-1 415 [30] Kang J, Choi M Y, Kang S, et al. Application of a 1H nuclear magnetic resonance (NMR) metabolomics approach combined with orthogonal projections to latent structure-discriminant analysis as an efficient tool for discriminating between Korean and Chinese herbal medicines[J]. J Agr Food Chem, 2008, 56(24): 11 589-11 595. |